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ABSTRACT 

Compressive sensing is a technique that 

enables recovery of signals represented by 

an underdetermined system of equations.  

Such a recovery of an original signal is 

made possible if the samples are 

represented in a sparse manner provided 

an appropriate measuring matrix is used 

for the modelled system. Blurred images 

are examples of signals that are sparse 

especially in transform domains. Different 

researches have been done to show the 

possibility of recovering blurred images 

that use sparse representation of transform 

domains by applying compressive sensing. 

In our work, however, we propose a model 

that doesn’t require transforming into other 

domains. In addition, a box-wise approach 

has been used that derives the 

underdetermined system matrix from 7x7 

segmented boxes of the blurred image. 

Compressive sensing algorithms are 

applied on these boxes to recover the whole 

image iteratively. Our method is shown to 

have a much better computational 

complexity than the traditional Lucy-

Richardson deblurring method. Thus, with 

this improved computational complexity, 

the study provides an initial platform to 

deblur images using box-wise method and 

compressive sensing technique. 

Keywords: Compressive Sensing, 

Deblurring, Gaussian blur, IHT, Sparsity. 

1. INTRODUCTION 

Image processing is a field which finds 

various applications in everyday life. In 

digital image processing, different 

operations are done one of which being 

image restoration. Image restoration is the 

process of recovering an original image 

from a noisy or blurred one [1]. One part of 

image restoration is image deblurring in 

which the blur is removed from a corrupted 

image by different techniques. In image 

deblurring, it is desired to have a restored 

image that is as much close to the original 

one by using minimal computational 

resources. 

Presently, there exist different types of 

deblurring techniques. The Lucy-

Richardson algorithm, neural network 

approach, deblurring with Noisy Image 

pairs and deblurring with Handling Outliers 

are few of them [2]. Among the different 

types of blurs encountered in image 

processing, Gaussian blur is one of them. 

For instance, Gaussian blur occurs in 

images taken in astronomy or medicine 

such as MRI. 

Compressive sensing is a method which 

allows finding solution of equations which 

are underdetermined [3]. For reconstruction 

to be effective in compressive sensing, 

sparsity of the underdetermined system is 

one of the preconditions [4]. Blurred 

images are usually sparse in transform 

domains [5]. In this paper, a method which 

removes Gaussian blur using compressive 

sensing is introduced. With this method, a 

sparse system is derived and solved without 

transforming into other domains. 

This research paper contains five parts. The 

first part is the introduction. In the second 

part, an overview of compressive sensing 

including definition, existing algorithms 

and related works are discussed. The third 

part details the modeling process used in 

this work. The fourth part includes the 

results obtained by applying the 
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compressive sensing algorithm and their 

comparison with other deblurring methods. 

Finally, conclusion and recommendation 

are given in the fifth part. 

1.1 Compressive Sensing Overview 

 Compressive sensing is a theory first 

developed by David L. Donoho [3] and 

Candes, Romberg and Tao [6] in 2006 that 

can be used to solve a system of equations 

which is underdetermined. Starting from its 

first development, various algorithms have 

emerged that enable to solve an 

underdetermined system of equations. 

These algorithms have preconditions that 

need to be met for successful recovery of 

the solution. The first precondition is that 

the underdetermined system of equations 

should be represented in sparse manner [7]. 

The other common precondition for faithful 

recovery is incoherence which requires the 

matrix that represents the underdetermined 

system of equations to have low coherence 

[8]. The coherence of a matrix is defined as 

the absolute value of the maximum cross-

correlations between its columns [9]. 

Let the underdetermined system of 

equations be represented by ϕ(mxn) which 

is obtained by multiplying some original set 

of equations, ψ(nxn), by a matrix M(mxn) 

known as a measuring matrix where m<<n. 

And let the data to be recovered be a vector 

X of length n. Then the system of equations 

which is underdetermined can be 

represented as [3]: 

 𝑌 = MψX ,                                              (1) 

where ψ: nxn matrix 

M: mxn matrix 

X:  n sized vector to be restored 

Y: m sized known vector a.k.a 

observation vector 

𝑌 = ϕX                              (2) 

where ϕ = Mψ: mxn matrix 

For successful reconstruction to take place 

by compressive sensing, the matrix ϕ 

which is the product ψ  and M should be 

sparse and have low coherence [7][8].  

1.2 Restricted Isometry Property (RIP) 

In compressive sensing, a parameter known 

as Restricted Isometry Property (RIP) must 

be satisfied to ensure the faithful recovery 

of signals. The importance of this 

parameter relies on the fact that low 

coherence of the ϕ matrix is closely related 

to it [8]. The Restricted Isometry Property 

of the matrix,  ϕ,  given by ϕ = Mψ,  is 

defined as follows:  

Assume a matrix ϕ𝑚𝑥𝑛,  and an integer s 

such that 1 ≤ 𝑠 ≤ 𝑛 . If a constant δ𝑠 ∈
(0,1)  exists such that, for every m x s 

submatrix ϕs of ϕ, and for every vector z of 

dimension s [4],  

(1 − δs)‖z‖2 
2 ≤ ‖ϕsz‖2 

2 ≤  (1 + δs)‖z‖2 
2  

           (3) 

holds true, then the matrix ϕ  will have 

restricted isometry property of order s with 

the restricted isometric constant δs. 

Most compressive sensing algorithms 

specify that the RIP value of the matrix ϕ 

to be less than a certain constant so that a 

successful reconstruction takes place.  For 

example, Cande [8] specifies that the 

restricted isometric constant of order 2s 

should satisfy δ2s < √2 − 1 for successful 

recovery in compressive sensing. 

1.3 Sparsity 

A vector or a matrix is said to be sparse if it 

consists of mainly zero elements. A vector 

or a matrix is said to be s-sparse if it has 

utmost s non-zero elements [10]. Sparsity 

enables to bring about efficient solutions in 

compressive sensing and different 

algorithms depend on it to recover a signal 

[7][11]. For a matrix ϕ𝑚𝑥𝑛,in (2), Donoho 

and Tanner [12] state that compressive 

sensing algorithms can recover most sparse 

signals if s is given by: 

𝑠 =
𝑚

2 log 𝑛
                                                  (4) 
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1.4 Incoherence 

In compressive sensing, it is important that 

the measurement matrix M is selected in a 

way such that it has the lowest possible 

coherence with ψ  [9]. The mutual 

coherence, μ, for the matrix 𝜙 = 𝑀𝜓  

which needs to be minimized is described 

by the expression given below [8]. 

μ(𝜙) =  
𝑚𝑎𝑥

𝑖≠𝑗,1≤𝑖,𝑗≤𝑛
 {

|𝜙𝑖
𝑇𝜙𝑗|

‖𝜙𝑖‖.‖𝜙𝑗‖
}                   (5) 

where 𝜙𝑖 is the ith column of 𝜙. 

In the work by Tropp [13][14], it is stated 

that the coherence value, μ, need to satisfy 

𝑠 <
1

2
(μ−1 + 1)                                          

(6) 

for an accurate reconstruction to take place 

in the compressive sensing algorithms 

known as Orthogonal Matching Pursuit and 

Basic Pursuit. 

1.5 Reconstruction Algorithms 

In compressive sensing, there are different 

categories of reconstruction algorithms. 

The Matching Pursuit and Iterative 

Thresholding algorithms are two of them. 

The Matching Pursuit class of algorithms 

tries to represent a signal by linear 

expansion functions that form a dictionary 

[15]. Then the Matching Pursuit algorithm 

optimally selects dictionary elements that 

can best approximate the signal. The 

Orthogonal Matching Pursuit (OMP) [16] 

and Compressive Sampling Matching 

Pursuit (CoSaMP) [17] are examples of 

Matching Pursuit algorithms. 

The Iterative Thresholding algorithms try to 

recover a signal iteratively. They use a 

thresholding function 𝐇s(𝐱)  at each 

iteration to set components of a vector X 

which are less than some number ε to zero 

and leave the rest of the components 

untouched [18]. Iterative thresholding 

algorithms include the Iterative Hard 

thresholding algorithms and Iterative Soft 

thresholding algorithms. 

1.6 Related Works 

Image denoising based on compressive 

sensing was done by A. Tavakoli and A. 

Pourmohammad[19] in which an additive 

noise was used to model the compressive 

sensing equation by 𝑌 = 𝜙(𝑋 + 𝑍) .The 

authors performed compressive sensing 

denoising using existing algorithms 

namely, Orthogonal Matching 

Pursuit(OMP) and Iterative Hard 

Thresholding (IHT) in which they 

illustrated that IHT is faster than OMP. 

They also compared compressive sensing 

denoising with classical filters like Wiener 

filter, Median filter, Wavelet denoising and 

Gaussian filters. And the results showed 

that compressive sensing denoising gave 

the same result as some of the classical 

filters or fairly better result than the rest of 

the existing methods. 

In the work by Bruno Amizic et al. [5], 

blind image deconvolution is performed 

using compressive sensing. The authors 

experimented to show that a blurred image 

is mostly compressible in the transform 

domains. Based on this fact, the authors 

proposed a new algorithm that solves a 

constrained optimization problem. In doing 

so, they extended compressive sensing 

algorithms for use in blind image 

deconvolution and the experimental results 

from the work shows fairly better outputs 

than that of existing algorithms such as 

CoSamp.  

Blind image deblurring using compressive 

sensing has also been performed by J. Yu et 

al. [20]. The work exploited the fact that 

similar structures usually recur in a natural 

image. The authors also exploited the fact 

that a natural image exhibits multiple 

similar patches or structures when the 

image is down sampled. Thus, the authors 

used the down sampled version of the 

blurred image in order to find sparse 

representation of the original image. Using 

structural multi-similarity and sparse 

representation a blind motion deblurring 

method was developed which was shown to 

have 98.88% success rate. 



Rahel Berhanu Dibeya and Fitsum Assamnew Andargie 

Journal of EEA, Vol. 43, December 2025 96 

Metzler et al. [21] applied compressive 

sensing to already existing denoising 

methods. The authors integrated the 

existing denoising framework AMP 

(Approximate message passing) with 

compressive sensing recovery. In this 

method, they illustrated that using 

Denoising AMP and compressive sensing 

together gives state of the art recovery 

while operating ten times faster than 

existing denoising algorithms. 

Compressive sensing image denoising is 

also done by Kang et al. [22]. In this work, 

the image was decomposed into edge and 

flat regions. In addition, an 8x8 

measurement matrix was designed which 

was applied to the first three wavelet 

coefficients of the blurred image. Then 

from the existing compressive sensing 

algorithms, OMP (Orthogonal Matching 

Pursuit) was applied to construct each block 

in the image. Different error thresholds 

were used based on the block being in edge 

or flat region. Based on the experiments 

done by the authors, the proposed method 

gives better results than other existing 

methods. 

2. MATERIALS AND METHODS 

2.1 Applying Compressive Sensing to 

Deblur Gaussian Blur 

Compressive sensing allows to solve an 

underdetermined system of equations given 

the sparsity and incoherence conditions are 

satisfied. It is known that there are different 

existing methods for sparse representation 

of signals. One of these methods commonly 

used for sparse representation is 

transformation of the blurred image into 

domains such as wavelet [5]. In this work, a 

non-blind deblurring that doesn’t require 

transforming the blurred image into another 

domain has been done. The deblurring 

method is a non-blind one with a known 

kernel. The chosen kernel is a two-

dimensional 7x7 Gaussian kernel with 

standard deviation of 𝜎 = 2.  

2.2 Representing Gaussian Blur by a 

Sparse Matrix Using Convolution 

In deriving a model for the deblurring, 

image convolution with the above-

mentioned kernel is utilized. Convolution 

of an image involves replacing the pixels in 

an image with the linear combination of the 

neighbouring pixels according to the values 

in a certain kernel [23]. 

By applying the standard procedure of 

convolution between the stated Gaussian 

kernel and an image with width w and 

height h pixels, there will be a resulting 

wxh system of equations. Thus, given an 

image blurred with this kernel, if the 

original image is required to be restored, 

the following system of equations needs to 

be solved.  

𝑌 = ψ𝑋,                                   (7) 

  where Y - the blurred image vector of 

length s=wxh=wh 

             ψ  - an s x s matrix such that s= 

wxh=wh 

             X - the original image vector of 

length s=wxh=wh to be restored 

Basically, wxh is the size or the total 

number of pixels of the image. Therefore, 

there will be total number of equations 

which is equal to the total number of pixels 

in the image. To solve these equations in 

the direct way, the inverse of the matrix ψ 

has to be solved which usually has 

computational complexity of O(s3), where 

s= wh. 

As mentioned earlier, the system of 

equations 𝑌 = ψ𝑋  is obtained by 

convolving each pixel of the image with the 

convolution kernel. In these equations, a 

small fraction of the total number of pixels 

(7x7 or 49 neighboring pixels) is used to 

replace a pixel with their linear 

combinations. Because of this, the resulting 

equations are sparse mainly consisting of 

zeros. The sparsity found in these equations 

has made it possible to apply compressive 

sensing algorithms without transforming 

into other domains.  
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2.3 Specification of the Approach Used 

for Compressive Sensing Image 

Deblurring 

While it is possible to apply compressive 

sensing algorithms to the whole set of 

equations which represents the total number 

of pixels, in this work however, an 

alternative method has been used. In this 

approach, the image has been segmented 

into 7x7 boxes measured in pixels. Then, 

49 equations were derived resulting from 

convolution of every pixel in each box with 

the 7x7 Gaussian kernel. Out of the 49 

equations, about half of them will be 

selected by a measurement matrix M. And 

to these selected equations, a compressive 

sensing algorithm is applied to retrieve the 

49 original pixels. Finally, this procedure is 

repeated at each box iteratively until the 

whole image is covered. 

The reason behind following this approach 

was initially to simplify the process of 

computing the RIP of the matrix to which 

compressive sensing was to be applied. In 

the end, however, the computation of the 

RIP parameter was not found necessary. 

This was because the Hard iterative 

Thresholding algorithm used in the work 

was found to converge because the norm-2 

of the matrix involved was less than one.  

Derivation of Sparse Basis Matrix 𝛙 

from a Gaussian Kernel 

As the mentioned earlier, the method used 

for the deblurring involves segmentation of 

the image into 7x7 boxes. Thus, for an 

image with height h and width w pixel, the 

maximum value of the total number of 

boxes is given by: 

𝑀𝑎𝑥. 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 =

(
𝑤

7
+ 1 )(

ℎ

7
+ 1)                                         (8) 

When a single 7x7 box is convolved with a 

7X7 Gaussian kernel, there will be a 

resulting 49 set of equations with 49 

unknown pixel values. These equations 

constitute the ψ matrix. Also, when a 7x7 

box is convolved with a 7x7 Gaussian 

kernel only the central pixel at (3,3) is 

covered completely by the Gaussian kernel. 

Because of this, the convolution result will 

not be accurate at the rest of the pixels. 

Such effect is also observed when doing 

convolution at the edge of any image. For a 

convolution by a Gaussian kernel for 

example, this results in blackening of the 

image at the edges instead of whitening it. 

There are different existing methods that 

can be used to correct this such as wrapping 

or mirroring an image, ignoring edge pixels 

or duplicating edge pixels [23].   

For the image convolution of 7x7 boxes at 

hand, ignoring the edge pixels cannot be an 

option because this will mean ignoring the 

whole image. But mirroring the image has 

been found a better option because 

symmetry is found frequently in nature and 

consequently in most pictures. After 

applying mirroring and doing the 

convolution of the 49 pixels of single box a 

normalized 49x49  ψ matrix will result. 

2.4 Derivation of Measurement Matrix – 

M and Matrix – 𝛟 

The measurement matrix is mxn in size 

where m<n. The task of the measurement 

matrix is to reduce the n number of 

equations to m equations and it can be of 

different compositions. After doing the 

required computations and tests, finally the 

measurement matrix has been designed in 

such a way that it selects the even 

numbered rows from the main set of 49 

equations. This measurement matrix is 

found to give the lowest coherence in the 

matrix ϕ  which in turn gives favourable 

results in compressive sensing. Then, the ϕ 

matrix is obtained by using the relation 

ϕ = 𝑀ψ.                                                (9) 

2.5 Selection of a Reconstruction 

Algorithm 

There are different algorithms of 

compressive sensing that can be applied to 

a given problem. Here, the ϕ matrix which 

is derived from the image’s convolution 

with the 2D-Gaussian kernel consists of 

coefficients that are all less than 1. As a 
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result, the norm-2 of the matrix becomes 

less than 1 which makes it suitable to apply 

the Iterative Hard Thresholding algorithm 

of compressive sensing. This is because the 

Iterative Hard Thresholding algorithm is 

stated to converge whenever the norm-2 of 

the matrix ϕ is less than 1 [18]. For the ϕ 

matrix that has been used here, the second 

norm is found to be: ‖𝜙‖2 =  0.7649 . 

2.6 Computation of Parameters 

Required for Use in Iterative Hard 

Thresholding Algorithm 

The Iterative Hard Thresholding algorithm 

is listed below [18]. 

   Listing.1 The Hard Iterative Thresholding 

Algorithm 

Input 

- s the sparsity of X   

-y ε Rm and the matrix ϕ ε Rmxn  

Output: 

- X’  such that y = ϕx’ 

1. X(0) =  0 

2. for i=1,…do 

3.      X(i) = Hs(X(i-1) +  

ϕT(y - ϕ X(i-1))) 

4. end for 

5. X’= X(i) 

where Hs is hard thresholding function 

which sets all components of the vector x to 

zero except the s largest components.  

      𝑯𝑠(𝒙)  = {
𝑥𝑖, 𝑥𝑖  ≥ 𝜀
0, 𝑥𝑖 < 𝜀

  , 

 𝜀 is the s-largest component of X 

Before applying the Iterative Hard 

Thresholding algorithm some parameters 

need to be predetermined. 

Setting m where m is the number of rows 

of the matrix 𝛟(mxn): The integer m is the 

number of rows of the matrix ϕ. For each 

7x7 box of the image, 49 equations were 

derived making n=49. Compressive sensing 

uses underdetermined system of equations 

where m<n. In order minimize the 

computational complexity of the Iterative 

Hard Thresholding algorithm m should be 

as much small as possible. This is because 

the Iterative Hard Thresholding algorithm 

has computational complexity of O(mn) per 

iteration [24]. However, a balance should 

be kept in the minimizing of m which 

otherwise will compromise the restoration 

of the image.  Keeping that in 

consideration, m is selected to be, m = 16 

for initial trial. 

Setting the sparsity value s: According to 

Equation (4), s is calculated as: 

𝑠 =
𝑚

2 log 𝑛
=  

16

2 log 49
= 4.733 ≅ 5  (10) 

Setting the upper bound ε of the 

thresholding function: 𝜀  is the s-largest 

element of X. It is also possible that 𝜀 can 

be selected randomly whenever there is no 

unique set of s number of elements which 

are the largest in the vector X [18]. The 

pixel values in an image range from 0-255. 

And most images contain much larger 

number of pixels than 255. As a result, 

most of the time there will not be found a 

unique set of s number of elements which 

are the largest pixel values in an image. 

Because of this, ε has been set randomly. 

Thus, ε is made to be equal to the sparsity 

value s giving ε = 5. 

Computing theoretical maximum 

number of iterations 𝒌∗ : The theoretical 

maximum number of iterations can be 

computed using Equations (11) and (12). 

And it holds true when the matrix ϕ  has 

modified Restricted Isometric Property 

(RIP) of order 3s, 𝛽3𝑠 < 1
8⁄ , where 𝛽𝑠 =

1 −
1−𝛿𝑠

1+𝛿𝑠
. The calculation of RIP is a 

computationally intensive process and this 

is stated in [24]. Due to this, the Restricted 

Isometry Property (RIP), 𝛿𝑠 , has not been 

computed for the matrix ϕ . As it is 

mentioned before, the precondition for 

convergence of the Iterative Hard 

Thresholding algorithm is satisfied with the 

norm-2 of the matrix ϕ being less than 1. 

But with the RIP value of the matrix ϕ 

being unknown, the theoretical maximum 
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number of iterations may not hold true. As 

a result, the theoretical maximum number 

of iterations is computed and then taken as 

the starting number of iterations with which 

the Iterative Hard Thresholding algorithm 

is applied. 

The theoretical maximum number of 

iterations, 𝑘∗, is computed as follows. 

Given, 𝑌 = 𝜙𝑋 + 𝑒  (where e is the noise 

vector in the blurred image) and 𝑋′ as the 

𝑘𝑡ℎ approximation,                                         

𝑘∗ = ⌈log2 (
‖𝑋′‖

2

𝜀𝑠
)⌉                         (11) 

𝜀𝑠 = ‖𝑋 − 𝑋′‖2 +
1

√𝑠
‖𝑋 − 𝑋′‖1 + ‖𝑒‖2

 (1

2) 

‖𝑋′‖2 can have different values depending 

on the pixel color. Here, the maximum 

value of ‖𝑋′‖2  is computed with the 

maximum value a pixel can have which is 

255. X is n-dimensional with n=49. The 

norm-2 and norm-1 of the error vector, 
‖𝑋 − 𝑋′‖ , is computed assuming a 

maximum of 1 pixel difference between the 

actual solution and the approximation 

vector. The noise is assumed to be zero 

giving ‖𝑒‖2 = 0. With these values set, the 

theoretical maximum number of iterations 

becomes: 𝑘∗ = 6  

Initial approximation value: The initial 

approximation vector has been set to have a 

value of white pixel which is 255 i.e. X(0) = 

255. 

3. RESULTS AND DISCUSSION 

3.1 Specification of the Inputs Used for 

Deblurring 

We used 24 bit bitmap images as inputs for 

testing our proposed work. Thus, the 

algorithm has been applied three times in 

each image for the R(red), G(green), 

B(blue) array of pixels. 

The blurred images that are used as inputs 

in the deblurring process have been 

convolved box-wise. This means that when 

performing convolutions on the original 

images, the images are segmented into 7x7 

pixel boxes and the convolution is done 

iteratively on each box separately. And the 

mirroring of pixels near the borders of each 

box has been done during convolution. This 

is not the natural way of performing 

convolution. It has been done in order to 

match the input blurred image with the 

model used for deblurring. 

3.2 Applying IHT to Images and Results 

obtained 

When IHT was applied to an image with 

the initial parameters computed in Sec. III 

an acceptable outcome was not obtained. In 

the resulting image, each box has not been 

restored sufficiently and because of that 

grids have been formed all over the image. 

In order to improve the deblurring, m has 

been varied to different values and good 

results were obtained for m=25 by selecting 

even number of rows from ψ . This is 

because the ϕ  matrix has the lowest 

correlation when such a selection is done. 

Table 1 gives few samples of correlation 

values of 𝜙 for different types of measuring 

matrix M where ϕ = 𝑀ψ. 

Table 1 Correlation values of different values of the 

measurement matrix 

Type of Measurement 

matrix(M) 

Value 

of m 

Correlation 

of 𝝓 

Selects rows of 𝜓   which 

are multiples of 3 

16 0.979235 

Selects rows of 𝜓   which 

are even 

25 0.953705 

Selects rows of 𝜓 

randomly 

32 0.975379 

Iterative Hard Thresholding was applied to 

the convolved Electric_Lines image 

displayed in Figure 1 with the improved 

parameters shown in Table 2.  

  Table 2 Improved Parameters   

No of 

rows of 

𝛟(m) 

Upper bound of 

thresholding(ε)  

No of 

Iteration(k) 

25 5 6 
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In the deblurring result for the 

Electric_Lines image using m=25 and the 

other parameters unchanged, an 

improvement of only 0.4% in Green pixels 

and 1 % in Blue pixels was obtained while 

the Red pixels deteriorated by 0.6%. Thus, 

the number of iterations was increased 

successively and the image was deblurred 

in better percentages. In the process, good 

results were obtained for k = 45. Results for 

k = 12 and k = 45 are shown in Figure 1c 

and Figure 1d.   

 

 

(a)          (b) 

(c)                                                                     (d) 

Figure 1 (a) The original Electric_Lines image, (b) Box wise Gaussian convolved image, (c) Deblurring result 

for m=25, k=12, (d) Deblurring result for m=25, k=45 

 

Results of IHT applied to a box-wise Gaussian convolved flower image are shown in Figures 

2 (a to d).  

 

(a)                                      (b) 
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(c)           (d) 

Figure 2 (a) Original Flower Image, (b) Box-wise convolved Flower Image, (c) Deblurring result for k = 12,  

(d) Deblurring result for k = 45  

 

3.3 Mean Squared Error (MSE) of the 

Deblurred Images 

Mean Squared Error (MSE) of the 

deblurred images is shown in Table 3. The 

results show that IHT has deblurred the 

images to a measurable degree. In both 

images, the deblurring is negligible or 

negative at the theoretical maximum 

iteration k=6.  As it has been stated earlier, 

this theoretical maximum iteration has 

been used as starting number of iterations 

since the RIP of the matrix ϕ is unknown. 

Thus, when the number iterations is 

increased to k=12, there is a considerable 

improvement in the deblurring ranging 

from 4%-30%. At iteration number k=45, 

the images show a much better deblurring 

result ranging from 10%-40%. During the 

test, it has been observed that the number 

of iterations cannot be increased from a 

certain upper bound beyond which the 

image will be degraded. 

Table 3 MSE of the deblurred images 

 

Image 

MSE of Blurred 

image (RGB) 

No. of 

Iterations-k 

MSE of 

Deblurred 

image 

Improvement  

 

 

 

Electric_Lines 

    

 

(R)   374.6                  

(G)   343.7 

(B)   341.2 

           

            6 

(R)   376.9 -0.6% 

(G)   342.0 0.4% 

(B)   337.9 1% 

 

           12 

 

(R)   349.5 6.7% 

(G)   316.0 8% 

(B)   308.8 9.4% 

            

          45 

(R)   317.2 15.5% 

(G)   289.1 15.9% 

(B)   272.0 20.3% 

 

 

 

 

  Flower 

 

 

(R)  175.3 

(G)  128.5 

(B)  175.9 

          

           6 

(R)   168.4 3.9% 

(G)   130.2 -1.3% 

(B)   169.7 3.5% 

          

         12 

(R)   123.5 30% 

(G)   113.5 11.7% 

(B)   133.0 22.4% 

           

         45 

(R)   105.2 40% 

(G)   115.3 10.3% 

(B)   120.7 31.4% 
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3.4 Computational Complexity of the 

Deblurring Method 

The computational complexity analysis 

given below refers to both the time and 

storage requirement. The IHT algorithm 

has computational complexity of O(mn) 

per iteration [24]. For k number of 

iterations, the total computational 

complexity becomes O(kmn). The 

computational complexity of the 

deblurring method followed involves the 

cost of evaluating IHT at each box 

multiplied by the total number of boxes in 

the image. In addition, it includes the cost 

of evaluating ψ  and ϕ  matrices and the 

segmenting overhead.  

For the analysis below,  

n - represents the total number of pixels in a 

segmented box for this case a 7x7 box 

making n=49 

m - represents the number of rows in the ∅ 

matrix making m=25 

k - represents the number of iterations 

Computational complexity of the 

evaluating the 𝛙 matrix: Evaluating the ψ 

matrix includes representing the 

convolution of a 7x7 pixel box of the image 

with the 7x7 2D Gaussian kernel by 49x49 

matrix. This process includes three steps. 

The first one is initial representation of the 

convolution coefficients and the 7x7 box 

pixel indexes by nxn matrix whose 

elements need to be ordered further. This 

step has computational complexity of 

𝑂(𝑛2). The next step is ordering of each 

row of the nxn matrix based on pixel 

indexes using a sorting algorithm. This step 

gives the initial ψ matirx before mirroring. 

The ordering or sorting algortihm used for 

this second step is insertion sorting. 

Insertion sort has computational complexity  

𝑂(𝑛2) and when it is applied for each of the 

n rows of the unordered 𝜓  matrix, the 

resulting total computational complexity is 

𝑂(𝑛3). Finally, the 𝜓 matrix is mirrored to 

account for the incomplete convolution 

near the edges of the box. This final step 

has computational complexity of 𝑂(𝑛𝑥𝑛) =
𝑂(𝑛2). 

Thus, the total computational complexity of 

evaluating the 𝜓  matrix is the sum of the 

complexities of the above processes and it 

is equivalent to 𝑂(𝑛3). 

Computational complexity of the 

evaluating the ∅ matrix: The ∅ matrix is 

given by ∅ = 𝑀ψ where M is mxn and 𝜓 is 

nxn. This matrix multiplication has  

𝑂(𝑚𝑥𝑛𝑥𝑛) = 𝑂(𝑚𝑛2)  computational 

complexity. 

Computational complexity of applying 

IHT on a single 7x7 box: As stated above, 

Iterative Hard Thresholding, IHT, has 

computational complexity of O(kmn). In the 

box-wise approach, there is a cost of 

segmenting the image at each iteration 

which increases the computational 

complexity by a factor of 49. This is due to 

the cost of fetching an array of length 49 

pixels from the total collection of the 

image’s pixels at each iteration. Thus, the 

total computational complexity becomes 

O(kmnSO) where SO = n = 49 is the 

segmenting overhead. Computational 

complexity of applying IHT a single 7x7 

box =𝑂(𝑘𝑚𝑛𝑆𝑂) = 𝑂(𝑘𝑚𝑛2)   

Computational complexity of applying 

IHT on the whole image: As it has been 

stated earlier, the total number of boxes in a 

7x7 segmented image is given by: 

   𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 = (
𝑤

7
+ 1 )(

ℎ

7
+ 1)  ≅

(
𝑤

7
) (

ℎ

7
) 

  Where w - width of the image 

            h - height of the image 

Computational complexity of applying IHT 

on the whole image = 

𝑂 (𝑘𝑚𝑛2 (
𝑤

7
) (

ℎ

7
))=  𝑂(𝑘𝑚𝑛2 (

𝑤ℎ

49
)) 

= 𝑂(𝑘𝑚𝑛(𝑤ℎ)) 

The total Computational complexity of 

deblurring the whole image: The total 

computational complexity of deblurring the 

whole image is approximately the largest of 
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the computational costs stated above. The 

largest computational cost is when applying 

IHT on the whole image. Thus, the total 

computational complexity of deblurring the 

whole image is 𝑂(𝑘𝑚𝑛(𝑤ℎ)). 

Computational Complexity of Applying 

IHT using non-Box-wise Method 

If the Iterative Hard Thresholding 

algorithm had been used without 

segmenting the image into boxes, the 

expected computational complexity would 

have been as follows. In the case where 

non-box-wise method is used, the ψ matrix 

has dimensions sxs where s = wh. 

For the analysis below 

       n - represents the total number of rows 

in the ψ matrix making n = s = wh.  

       m - represents the number of rows in 

the ∅  matrix making  𝑚 =
𝑛

2
=

𝑤ℎ

2
 

assuming that half of the equations are 

selected. 

        k - represents the number of 

iterations as before. 

Computational complexity of the 

evaluating the 𝛙 matrix: Evaluating this 

computational complexity comprises the 

copying into, ordering and applying 

mirroring to the ψ  matrix which has 

dimension sxs where s=wh. The 

computational complexity of these 

processes amounts to 𝑂((𝑤ℎ)3). This value 

is obtained by replacing the box-size with 

the image size, n=s=wh, in the previous 

derivation of the computational complexity 

of the ψ matrix in the box-wise deblurring 

method. 

Computational complexity of the 

evaluating the ∅ matrix: As stated earlier, 

this computational complexity has order of 

multiplying the M(mxn) matrix by the 

𝜓(𝑛𝑥𝑛) matrix to give the ∅(mxn) matrix. 

By replacing the m and n values are given 

above for the non-box wise deblurring case, 

this step will have a computational 

complexity of  O (
(𝑤ℎ)3

2
) = 𝑂((𝑤ℎ)3).  

Computational complexity of applying 

IHT on the whole image: Substituting the 

values k, n and m for the non-box wise 

method stated above into the computational 

complexity of applying IHT to the box-wise 

method gives:  

Computational complexity of IHT without 

segmenting into boxes = 

𝑂(𝑘𝑛𝑚)=𝑂(𝑘
(𝑤ℎ)2

2
)  = 𝑂(𝑘(𝑤ℎ)2) 

The total computational complexity of 

deblurring the whole image: The total 

computational complexity of deblurring the 

whole image by using non-box wise 

method is the largest computational 

complexity of the above steps. And this 

largest value is obtained when evaluating 

the 𝜓  matrix giving computational 

complexity of 𝑂((𝑤ℎ)3). 

3.5 Comparison of the Box-wise 

Method of Deblurring with Other 

Methods 

As computed earlier, the box wise 

deblurring method has computational 

complexity of 𝑂(𝑘𝑚𝑛(𝑤ℎ). By substituting 

the values of k=45, m=25 and n=49, the 

computational complexity becomes 

(55125(𝑤ℎ)) . A typical printing size of 

an image has a resolution of 540 x 360 

pixels giving a total pixel size of 

wh=194,900[25]. Thus, for such an average 

sized image, it can be seen that the 

computational complexity is equivalent to 

𝑂((𝑤ℎ)2) . Applying IHT for the whole 

image, without using box-wise approach 

has computational complexity of 

𝑂((𝑤ℎ)3). Directly inverting the ψ matrix 

by Gauss Jordan method to get the original 

image has computational complexity of 

𝑂((𝑤ℎ)3) [26] while the Lucy-Richardson 

algorithm has computational complexity of 

𝑂(𝑘(𝑤ℎ)3) [27], [28]. 

3.6 Limitations of our work 

When normally (non-box-wise) convolved 

images were attempted to be deblurred with 

the box-wise deblurring method, the 

process resulted in no deblurring at any 

number of iterations. The reason behind 
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this is the mirroring used in the 7x7 boxes 

of the images while deriving the deblurring 

model. Here, the box size and the kernel 

size used are the same resulting in only the 

central pixel to be convolved in the normal 

way without mirroring. This has resulted in 

too much approximation in the box-wise 

method so that a normally convolved image 

couldn’t be deblurred using the given way. 

4. CONCLUSIONS 

In this paper, a box-wise method of 

deblurring images using compressive 

sensing has been introduced. When applied 

to box-wise convolved images, this box-

wise deblurring method has been found to 

be computationally more efficient than 

using the non-box wise counterpart or using 

the direct matrix inversion method. The 

method also exhibited a better 

computational efficiency than the well-

known Lucy-Richardson deblurring.  

However, when the box-wise deblurring 

method was applied to normally convolved 

images the results were not desirable. As it 

is stated earlier, when the convolution is 

done box-wise, mirroring is applied at those 

pixel points which the kernel cannot cover 

completely. When the box size and the 

kernel size are the same, in the given case 

7x7, only the central pixel of the box gets 

convolved in a normal way and for the rest 

of the 48 pixel mirroring must be done. 

That means, only 2% of the box is 

convolved in the conventional way which 

results in the mismatch of the deblurring 

model and normally convolved images.  

To minimize the approximations resulting 

from mirroring, the box size can be 

increased. But this will be at the cost of 

increasing the computational complexity 

which is given by 𝑂(𝑘𝑚𝑛(𝑤ℎ) where n is 

the box size. Finding an optimum design 

which minimizes the number of iterations, 

k, and the value of m can compensate for 

the increase in computational complexity 

caused by increasing the box size. In doing 

these, the deblurring method could be 

applicable to normally convolved images 

without its computational complexity being 

compromised. 
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