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ABSTRACT

Compressive sensing is a technique that
enables recovery of signals represented by
an underdetermined system of equations.
Such a recovery of an original signal is
made possible if the samples are
represented in a sparse manner provided
an appropriate measuring matrix is used
for the modelled system. Blurred images
are examples of signals that are sparse
especially in transform domains. Different
researches have been done to show the
possibility of recovering blurred images
that use sparse representation of transform
domains by applying compressive sensing.
In our work, however, we propose a model
that doesn’t require transforming into other
domains. In addition, a box-wise approach
has  been used that derives the
underdetermined system matrix from 7x7
segmented boxes of the blurred image.
Compressive  sensing  algorithms  are
applied on these boxes to recover the whole
image iteratively. Our method is shown to
have a much better computational
complexity than the traditional Lucy-
Richardson deblurring method. Thus, with
this improved computational complexity,
the study provides an initial platform to
deblur images using box-wise method and
compressive sensing technique.

Keywords: Compressive Sensing,
Deblurring, Gaussian blur, IHT, Sparsity.

1. INTRODUCTION

Image processing is a field which finds
various applications in everyday life. In
digital image  processing, different
operations are done one of which being
image restoration. Image restoration is the
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process of recovering an original image
from a noisy or blurred one [1]. One part of
image restoration is image deblurring in
which the blur is removed from a corrupted
image by different techniques. In image
deblurring, it is desired to have a restored
image that is as much close to the original
one by using minimal computational
resources.

Presently, there exist different types of
deblurring  techniques. @~ The  Lucy-
Richardson algorithm, neural network
approach, deblurring with Noisy Image
pairs and deblurring with Handling Outliers
are few of them [2]. Among the different
types of blurs encountered in image
processing, Gaussian blur is one of them.
For instance, Gaussian blur occurs in
images taken in astronomy or medicine
such as MRI.

Compressive sensing is a method which
allows finding solution of equations which
are underdetermined [3]. For reconstruction
to be effective in compressive sensing,
sparsity of the underdetermined system is
one of the preconditions [4]. Blurred
images are usually sparse in transform
domains [5]. In this paper, a method which
removes Gaussian blur using compressive
sensing is introduced. With this method, a
sparse system is derived and solved without
transforming into other domains.

This research paper contains five parts. The
first part is the introduction. In the second
part, an overview of compressive sensing
including definition, existing algorithms
and related works are discussed. The third
part details the modeling process used in
this work. The fourth part includes the
results obtained by applying the
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compressive sensing algorithm and their
comparison with other deblurring methods.
Finally, conclusion and recommendation
are given in the fifth part.

1.1 Compressive Sensing Overview

Compressive sensing is a theory first
developed by David L. Donoho [3] and
Candes, Romberg and Tao [6] in 2006 that
can be used to solve a system of equations
which is underdetermined. Starting from its
first development, various algorithms have
emerged that enable to solve an
underdetermined system of equations.
These algorithms have preconditions that
need to be met for successful recovery of
the solution. The first precondition is that
the underdetermined system of equations
should be represented in sparse manner [7].
The other common precondition for faithful
recovery is incoherence which requires the
matrix that represents the underdetermined
system of equations to have low coherence
[8]. The coherence of a matrix is defined as
the absolute value of the maximum cross-
correlations between its columns [9].

Let the wunderdetermined system of
equations be represented by ¢p(mxn) which
is obtained by multiplying some original set
of equations, Y(nxn), by a matrix M(mxn)
known as a measuring matrix where m<<n.
And let the data to be recovered be a vector
X of length n. Then the system of equations

which 1s underdetermined can be
represented as [3]:
Y = MyX, (1)

where y: nxn matrix
M: mxn matrix
X: n sized vector to be restored

Y: m sized known vector ak.a
observation vector

Y =¢X )
where ¢ = Myi: mxn matrix

For successful reconstruction to take place
by compressive sensing, the matrix ¢
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which is the product Y and M should be
sparse and have low coherence [7][8].

1.2 Restricted Isometry Property (RIP)

In compressive sensing, a parameter known
as Restricted Isometry Property (RIP) must
be satisfied to ensure the faithful recovery
of signals. The importance of this
parameter relies on the fact that low
coherence of the ¢ matrix is closely related
to it [8]. The Restricted Isometry Property
of the matrix, ¢, given by ¢ = My, is
defined as follows:

Assume a matrix ¢y, and an integer s
such that 1 <s<n. If a constant §5 €
(0,1) exists such that, for every m x s
submatrix ¢ of ¢ and for every vector z of
dimension s [4],

(1 -89zl < ldpszll3 < (1 +89)llzlI3
)

holds true, then the matrix ¢ will have
restricted isometry property of order s with
the restricted isometric constant &.

Most compressive sensing algorithms
specify that the RIP value of the matrix ¢
to be less than a certain constant so that a
successful reconstruction takes place. For
example, Cande [8] specifies that the
restricted isometric constant of order 2s

should satisfy 8,5 < V2 — 1 for successful
recovery in compressive sensing.

1.3 Sparsity

A vector or a matrix is said to be sparse if it
consists of mainly zero elements. A vector
or a matrix is said to be s-sparse if it has
utmost s non-zero elements [10]. Sparsity
enables to bring about efficient solutions in
compressive  sensing and  different
algorithms depend on it to recover a signal
[7][11]. For a matrix ¢,y n (2), Donoho
and Tanner [12] state that compressive
sensing algorithms can recover most sparse
signals if' s is given by:
m

s = “4)

o 2logn
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1.4 Incoherence

In compressive sensing, it is important that
the measurement matrix M is selected in a
way such that it has the lowest possible
coherence with ¢ [9]. The mutual
coherence, p, for the matrix ¢ = My
which needs to be minimized is described
by the expression given below [8].

_ __max_( |¢79) }
KD = o iciyen {nqbiu.llcp,-ll
where ¢; is the i™ column of ¢.

In the work by Tropp [13][14], it is stated
that the coherence value, y, need to satisfy

()

s < %(u‘l + 1)
(6)

for an accurate reconstruction to take place
in the compressive sensing algorithms
known as Orthogonal Matching Pursuit and
Basic Pursuit.

1.5 Reconstruction Algorithms

In compressive sensing, there are different
categories of reconstruction algorithms.
The Matching Pursuit and Iterative
Thresholding algorithms are two of them.
The Matching Pursuit class of algorithms
tries to represent a signal by linear
expansion functions that form a dictionary
[15]. Then the Matching Pursuit algorithm
optimally selects dictionary elements that
can best approximate the signal. The
Orthogonal Matching Pursuit (OMP) [16]
and Compressive Sampling Matching
Pursuit (CoSaMP) [17] are examples of
Matching Pursuit algorithms.

The Iterative Thresholding algorithms try to
recover a signal iteratively. They use a
thresholding function Hs(x) at each
iteration to set components of a vector X
which are less than some number ¢ to zero
and leave the rest of the components
untouched [18]. Iterative thresholding
algorithms include the Iterative Hard
thresholding algorithms and Iterative Soft
thresholding algorithms.
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1.6 Related Works

Image denoising based on compressive
sensing was done by A. Tavakoli and A.
Pourmohammad[19] in which an additive
noise was used to model the compressive
sensing equation by Y = ¢(X + Z) .The
authors performed compressive sensing
denoising using  existing  algorithms
namely, Orthogonal Matching
Pursuit(OMP) and  Iterative  Hard
Thresholding (IHT) in which they
illustrated that IHT is faster than OMP.
They also compared compressive sensing
denoising with classical filters like Wiener
filter, Median filter, Wavelet denoising and
Gaussian filters. And the results showed
that compressive sensing denoising gave
the same result as some of the classical
filters or fairly better result than the rest of
the existing methods.

In the work by Bruno Amizic et al. [5],
blind image deconvolution is performed
using compressive sensing. The authors
experimented to show that a blurred image
is mostly compressible in the transform
domains. Based on this fact, the authors
proposed a new algorithm that solves a
constrained optimization problem. In doing
so, they extended compressive sensing
algorithms for wuse in blind image
deconvolution and the experimental results
from the work shows fairly better outputs
than that of existing algorithms such as
CoSamp.

Blind image deblurring using compressive
sensing has also been performed by J. Yu et
al. [20]. The work exploited the fact that
similar structures usually recur in a natural
image. The authors also exploited the fact
that a natural image exhibits multiple
similar patches or structures when the
image is down sampled. Thus, the authors
used the down sampled version of the
blurred image in order to find sparse
representation of the original image. Using
structural ~ multi-similarity and sparse
representation a blind motion deblurring
method was developed which was shown to
have 98.88% success rate.
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Metzler et al. [21] applied compressive
sensing to already existing denoising

methods. The authors integrated the
existing  denoising framework =~ AMP
(Approximate message passing) with

compressive sensing recovery. In this
method, they illustrated that wusing
Denoising AMP and compressive sensing
together gives state of the art recovery
while operating ten times faster than
existing denoising algorithms.

Compressive sensing image denoising is
also done by Kang et al. [22]. In this work,
the image was decomposed into edge and
flat regions. In addition, an 8x8
measurement matrix was designed which
was applied to the first three wavelet
coefficients of the blurred image. Then
from the existing compressive sensing
algorithms, OMP (Orthogonal Matching
Pursuit) was applied to construct each block
in the image. Different error thresholds
were used based on the block being in edge
or flat region. Based on the experiments
done by the authors, the proposed method
gives better results than other existing
methods.

2. MATERIALS AND METHODS

2.1 Applying Compressive Sensing to
Deblur Gaussian Blur

Compressive sensing allows to solve an
underdetermined system of equations given
the sparsity and incoherence conditions are
satisfied. It is known that there are different
existing methods for sparse representation
of signals. One of these methods commonly
used for sparse representation s
transformation of the blurred image into
domains such as wavelet [5]. In this work, a
non-blind deblurring that doesn’t require
transforming the blurred image into another
domain has been done. The deblurring
method is a non-blind one with a known
kernel. The chosen kernel is a two-
dimensional 7x7 Gaussian kernel with
standard deviation of 0 = 2.
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2.2 Representing Gaussian Blur by a
Sparse Matrix Using Convolution

In deriving a model for the deblurring,
image convolution with the above-
mentioned kernel is utilized. Convolution
of an image involves replacing the pixels in
an image with the linear combination of the
neighbouring pixels according to the values
in a certain kernel [23].

By applying the standard procedure of
convolution between the stated Gaussian
kernel and an image with width w and
height / pixels, there will be a resulting
wxh system of equations. Thus, given an
image blurred with this kernel, if the
original image is required to be restored,
the following system of equations needs to
be solved.

Y = yX, (7

where Y - the blurred image vector of
length s=wxh=wh

J - an s x s matrix such that s=
wxh=wh

X - the original image vector of
length s=wxh=wh to be restored

Basically, wxh is the size or the total
number of pixels of the image. Therefore,
there will be total number of equations
which is equal to the total number of pixels
in the image. To solve these equations in
the direct way, the inverse of the matrix s
has to be solved which wusually has
computational complexity of O(s®), where
s= wh.

As mentioned earlier, the system of
equations Y =YX is obtained by
convolving each pixel of the image with the
convolution kernel. In these equations, a
small fraction of the total number of pixels
(7x7 or 49 neighboring pixels) is used to
replace a pixel with their linear
combinations. Because of this, the resulting
equations are sparse mainly consisting of
zeros. The sparsity found in these equations
has made it possible to apply compressive
sensing algorithms without transforming
into other domains.
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2.3 Specification of the Approach Used
for Compressive  Sensing Image
Deblurring

While it is possible to apply compressive
sensing algorithms to the whole set of
equations which represents the total number
of pixels, in this work however, an
alternative method has been used. In this
approach, the image has been segmented
into 7x7 boxes measured in pixels. Then,
49 equations were derived resulting from
convolution of every pixel in each box with
the 7x7 Gaussian kernel. Out of the 49
equations, about half of them will be
selected by a measurement matrix M. And
to these selected equations, a compressive
sensing algorithm is applied to retrieve the
49 original pixels. Finally, this procedure is
repeated at each box iteratively until the
whole image is covered.

The reason behind following this approach
was initially to simplify the process of
computing the RIP of the matrix to which
compressive sensing was to be applied. In
the end, however, the computation of the
RIP parameter was not found necessary.
This was because the Hard iterative
Thresholding algorithm used in the work
was found to converge because the norm-2
of the matrix involved was less than one.

Derivation of Sparse Basis Matrix
from a Gaussian Kernel

As the mentioned earlier, the method used
for the deblurring involves segmentation of
the image into 7x7 boxes. Thus, for an
image with height 7 and width w pixel, the
maximum value of the total number of
boxes is given by:

Max.value of the total no.of boxes =
E+1)G+1) (8)

When a single 7x7 box is convolved with a
7X7 Gaussian kernel, there will be a
resulting 49 set of equations with 49
unknown pixel values. These equations
constitute the P matrix. Also, when a 7x7
box is convolved with a 7x7 Gaussian
kernel only the central pixel at (3,3) is
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covered completely by the Gaussian kernel.
Because of this, the convolution result will
not be accurate at the rest of the pixels.
Such effect is also observed when doing
convolution at the edge of any image. For a
convolution by a Gaussian kernel for
example, this results in blackening of the
image at the edges instead of whitening it.
There are different existing methods that
can be used to correct this such as wrapping
or mirroring an image, ignoring edge pixels
or duplicating edge pixels [23].

For the image convolution of 7x7 boxes at
hand, ignoring the edge pixels cannot be an
option because this will mean ignoring the
whole image. But mirroring the image has
been found a better option because
symmetry is found frequently in nature and
consequently in most pictures. After
applying mirroring and doing the
convolution of the 49 pixels of single box a
normalized 49x49  matrix will result.

2.4 Derivation of Measurement Matrix —
M and Matrix — ¢

The measurement matrix is mxn in size
where m<n. The task of the measurement
matrix is to reduce the » number of
equations to m equations and it can be of
different compositions. After doing the
required computations and tests, finally the
measurement matrix has been designed in
such a way that it selects the even
numbered rows from the main set of 49
equations. This measurement matrix is
found to give the lowest coherence in the
matrix ¢ which in turn gives favourable
results in compressive sensing. Then, the ¢
matrix is obtained by using the relation

¢ = My. ©)
2.5 Selection of a Reconstruction
Algorithm

There are different algorithms of

compressive sensing that can be applied to
a given problem. Here, the ¢ matrix which
is derived from the image’s convolution
with the 2D-Gaussian kernel consists of
coefficients that are all less than 1. As a
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result, the norm-2 of the matrix becomes
less than 1 which makes it suitable to apply
the Iterative Hard Thresholding algorithm
of compressive sensing. This is because the
Iterative Hard Thresholding algorithm is
stated to converge whenever the norm-2 of
the matrix ¢ is less than 1 [18]. For the ¢
matrix that has been used here, the second
norm is found to be: ||p|], = 0.7649 .

2.6 Computation of Parameters
Required for Use in Iterative Hard
Thresholding Algorithm

The Iterative Hard Thresholding algorithm
is listed below [18].

Listing.1 The Hard Iterative Thresholding
Algorithm

Input
- § the sparsity of X
-y &€ R" and the matrix ¢ ¢ R™"
Output:
- X’ such thaty = ¢x’
1.X7= 0
2. fori=l1,...do

3. XV = Hs(X®™) +
$'(v- ¢ X))

4. end for

5.X =X

where Hs is hard thresholding function

which sets all components of the vector x to

zero except the s largest components.
Xi, Xi =€

Hs(x) :{0 X <€ ’

€ is the s-largest component of X

Before applying the Iterative Hard
Thresholding algorithm some parameters
need to be predetermined.

Setting m where m is the number of rows
of the matrix ¢(mxn): The integer m is the
number of rows of the matrix ¢. For each
7x7 box of the image, 49 equations were
derived making n=49. Compressive sensing
uses underdetermined system of equations
where m<n. In order minimize the
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computational complexity of the Iterative
Hard Thresholding algorithm m should be
as much small as possible. This is because
the Iterative Hard Thresholding algorithm
has computational complexity of O(mn) per
iteration [24]. However, a balance should
be kept in the minimizing of m which
otherwise will compromise the restoration
of the image. Keeping that in
consideration, m is selected to be, m = 16
for initial trial.

Setting the sparsity value s: According to
Equation (4), s is calculated as:

m 16 -
S = Jlogn — Zlogds 4733 =5 (10)

Setting the wupper bound ¢ of the
thresholding function: ¢ is the s-largest
element of X. It is also possible that € can
be selected randomly whenever there is no
unique set of s number of elements which
are the largest in the vector X [18]. The
pixel values in an image range from 0-255.
And most images contain much larger
number of pixels than 255. As a result,
most of the time there will not be found a
unique set of s number of elements which
are the largest pixel values in an image.
Because of this, ¢ has been set randomly.
Thus, ¢ is made to be equal to the sparsity
value s giving € = 5.

Computing theoretical maximum
number of iterations k*: The theoretical
maximum number of iterations can be
computed using Equations (11) and (12).
And it holds true when the matrix ¢ has
modified Restricted Isometric Property

(RIP) of order 3s, B35 < 1/8’ where S =
118
1485
computationally intensive process and this
is stated in [24]. Due to this, the Restricted
Isometry Property (RIP), d5, has not been
computed for the matrix ¢ . As it is
mentioned before, the precondition for
convergence of the Iterative Hard
Thresholding algorithm is satisfied with the
norm-2 of the matrix ¢ being less than 1.
But with the RIP value of the matrix ¢
being unknown, the theoretical maximum

The calculation of RIP is a
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number of iterations may not hold true. As
a result, the theoretical maximum number
of iterations is computed and then taken as
the starting number of iterations with which
the Iterative Hard Thresholding algorithm
is applied.

The theoretical maximum number of
iterations, k*, is computed as follows.

Given, Y = ¢pX + e (where e is the noise
vector in the blurred image) and X' as the
k" approximation,

ke = [1og, (—"’i ”2)] (11)
! 1 !
& = |1X = X'llz + =l1X = X"lly + llell2
(

2)

||X']|, can have different values depending
on the pixel color. Here, the maximum
value of ||X'||, is computed with the
maximum value a pixel can have which is
255. X is n-dimensional with n=49. The
norm-2 and norm-1 of the error vector,
|IX —X'|| , is computed assuming a
maximum of 1 pixel difference between the
actual solution and the approximation
vector. The noise is assumed to be zero
giving ||e||, = 0. With these values set, the
theoretical maximum number of iterations
becomes: k* = 6

Initial approximation value: The initial
approximation vector has been set to have a
value of white pixel which is 255 i.e. X =
255.

3. RESULTS AND DISCUSSION

3.1 Specification of the Inputs Used for
Deblurring

We used 24 bit bitmap images as inputs for
testing our proposed work. Thus, the
algorithm has been applied three times in
each image for the R(red), G(green),
B(blue) array of pixels.

The blurred images that are used as inputs
in the deblurring process have been
convolved box-wise. This means that when
performing convolutions on the original
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images, the images are segmented into 7x7
pixel boxes and the convolution is done
iteratively on each box separately. And the
mirroring of pixels near the borders of each
box has been done during convolution. This
is not the natural way of performing
convolution. It has been done in order to
match the input blurred image with the
model used for deblurring.

3.2 Applying IHT to Images and Results
obtained

When IHT was applied to an image with
the initial parameters computed in Sec. III
an acceptable outcome was not obtained. In
the resulting image, each box has not been
restored sufficiently and because of that
grids have been formed all over the image.

In order to improve the deblurring, m has
been varied to different values and good
results were obtained for m=25 by selecting
even number of rows from Y. This is
because the ¢ matrix has the lowest
correlation when such a selection is done.
Table 1 gives few samples of correlation
values of ¢ for different types of measuring
matrix M where ¢ = M.

Table 1 Correlation values of different values of the
measurement matrix

Type of Measurement Value Correlation
matrix(M) of m of p

Selects rows of i which 16 0.979235
are multiples of 3

Selects rows of 1 which 25 0.953705
are even

Selects rows of P 32 0.975379

randomly

Iterative Hard Thresholding was applied to
the convolved Electric Lines image
displayed in Figure 1 with the improved
parameters shown in Table 2.

Table 2 Improved Parameters

No of Upper bound of No of

rows of thresholding(¢) Iteration(k)
b (m)

25 5 6
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In the deblurring result for the
Electric Lines image using m=25 and the
other parameters unchanged, an
improvement of only 0.4% in Green pixels
and 1 % in Blue pixels was obtained while
the Red pixels deteriorated by 0.6%. Thus,
the number of iterations was increased

successively and the image was deblurred
in better percentages. In the process, good
results were obtained for k£ = 45. Results for
k =12 and k = 45 are shown in Figure lc
and Figure 1d.

(b)

(©)

(d)

Figure 1 (a) The original Electric Lines image, (b) Box wise Gaussian convolved image, (c) Deblurring result

for m=25, k=12, (d) Deblurring result for m=25, k=45

Results of IHT applied to a box-wise Gaussian convolved flower image are shown in Figures

2 (ato d).
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(c)
Figure 2 (a) Original Flower Image, (b) Box-wise convolved Flower Image, (¢) Deblurring result for k=12,

(d) Deblurring result for £ = 45

3.3 Mean Squared Error (MSE) of the
Deblurred Images

Mean Squared Error (MSE) of the
deblurred images is shown in Table 3. The
results show that IHT has deblurred the
images to a measurable degree. In both
images, the deblurring is negligible or
negative at the theoretical maximum
iteration k=6. As it has been stated earlier,
this theoretical maximum iteration has

(d)

since the RIP of the matrix ¢ is unknown.
Thus, when the number iterations is
increased to k=12, there is a considerable
improvement in the deblurring ranging
from 4%-30%. At iteration number k=45,
the images show a much better deblurring
result ranging from 10%-40%. During the
test, it has been observed that the number
of iterations cannot be increased from a
certain upper bound beyond which the

been used as starting number of iterations image will be degraded.
Table 3 MSE of the deblurred images
MSE of Blurred No. of MSE of Improvement

Image image (RGB) Iterations-k Deblurred
image
(R) 376.9 -0.6%
® 3746 6 (G) 342.0 0.4%
. [
Electric_Lines (G) 343.7 (B) 337.9 1A>0
(B) 3412 (R) 349.5 6.7%
12 (G) 316.0 8%
(B) 308.8 9.4%
(R) 317.2 15.5%
45 (G) 289.1 15.9%
(B) 272.0 20.3%
(R) 168.4 3.9%
6 (G) 130.2 -1.3%
(R) 1753 (B) 169.7 3.5%
(G) 128.5 (R) 1235 30%
Flower (B) 175.9 12 (G) 1135 11.7%
(B) 133.0 22.4%
(R) 105.2 40%
45 (G) 1153 10.3%
(B) 120.7 31.4%
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3.4 Computational Complexity of the
Deblurring Method

The computational complexity analysis
given below refers to both the time and
storage requirement. The IHT algorithm
has computational complexity of O(mn)
per iteration [24]. For k& number of

iterations, the total = computational
complexity  becomes  O(kmmn). The
computational ~ complexity  of  the

deblurring method followed involves the
cost of evaluating IHT at each box
multiplied by the total number of boxes in
the image. In addition, it includes the cost
of evaluating y and ¢ matrices and the
segmenting overhead.

For the analysis below,

n - represents the total number of pixels in a
segmented box for this case a 7x7 box
making n=49

m - represents the number of rows in the @
matrix making m=25

k - represents the number of iterations

Computational complexity of the
evaluating the Y matrix: Evaluating the
matrix includes representing the
convolution of a 7x7 pixel box of the image
with the 7x7 2D Gaussian kernel by 49x49
matrix. This process includes three steps.
The first one is initial representation of the
convolution coefficients and the 7x7 box
pixel indexes by nxn matrix whose
elements need to be ordered further. This
step has computational complexity of
0(n?). The next step is ordering of each
row of the nxn matrix based on pixel
indexes using a sorting algorithm. This step
gives the initial Y matirx before mirroring.
The ordering or sorting algortihm used for
this second step is insertion sorting.
Insertion sort has computational complexity
0(n?) and when it is applied for each of the
n rows of the unordered ¥ matrix, the
resulting total computational complexity is
0(n®). Finally, the ¥ matrix is mirrored to
account for the incomplete convolution
near the edges of the box. This final step
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has computational complexity of O(nxn) =
0(n?).

Thus, the total computational complexity of
evaluating the 1) matrix is the sum of the
complexities of the above processes and it
is equivalent to 0(n?).

Computational complexity of the
evaluating the @ matrix: The @ matrix is
given by @ = My where M is mxn and 1 is

nxn. This matrix multiplication has
0(mxnxn) = 0(mn?) computational
complexity.

Computational complexity of applying
IHT on a single 7x7 box: As stated above,
Iterative Hard Thresholding, IHT, has
computational complexity of O(kmn). In the
box-wise approach, there is a cost of
segmenting the image at each iteration
which  increases the  computational
complexity by a factor of 49. This is due to
the cost of fetching an array of length 49
pixels from the total collection of the
image’s pixels at each iteration. Thus, the
total computational complexity becomes
O(kmnSO) where SO = n = 49 is the
segmenting  overhead. = Computational
complexity of applying IHT a single 7x7
box =0(kmnS0) = 0(kmn?)

Computational complexity of applying
IHT on the whole image: As it has been
stated earlier, the total number of boxes in a
7x7 segmented image is given by:

Total no.of boxes = (g +1 )(% +1) =
w)  h
()&
Where w - width of the image
h - height of the image

Computational complexity of applying IHT
on the whole image =

2 (W) (M))= 2 (Wh
0 (famn (5) (5))= otkmn? (35)
= 0(kmn(wh))
The total Computational complexity of
deblurring the whole image: The total

computational complexity of deblurring the
whole image is approximately the largest of
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the computational costs stated above. The
largest computational cost is when applying
IHT on the whole image. Thus, the total
computational complexity of deblurring the
whole image is O (kmn(wh)).

Computational Complexity of Applying
IHT using non-Box-wise Method

If the Iterative Hard Thresholding
algorithm had been used without
segmenting the image into boxes, the
expected computational complexity would
have been as follows. In the case where
non-box-wise method is used, the Y matrix
has dimensions sxs where s = wh.

For the analysis below

n - represents the total number of rows
in the P matrix making n = s = wh.

m - represents the number of rows in

. . h
the @ matrix making m = g = WT
assuming that half of the equations are

selected.

k - represents the number of
iterations as before.

Computational complexity of the
evaluating the Y matrix: Evaluating this
computational complexity comprises the
copying into, ordering and applying
mirroring to the Y matrix which has
dimension sxs where s=wh. The
computational  complexity of  these
processes amounts to O((wh)?). This value
is obtained by replacing the box-size with
the image size, n=s=wh, in the previous
derivation of the computational complexity
of the Y matrix in the box-wise deblurring
method.

Computational complexity of the
evaluating the @ matrix: As stated earlier,
this computational complexity has order of
multiplying the M(mxn) matrix by the
Y (nxn) matrix to give the @(mxn) matrix.
By replacing the m and n values are given
above for the non-box wise deblurring case,
this step will have a computational

“) = o(wh)®).

complexity of O (
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Computational complexity of applying
IHT on the whole image: Substituting the
values k, n» and m for the non-box wise
method stated above into the computational
complexity of applying IHT to the box-wise
method gives:

Computational complexity of IHT without
segmenting into boxes =

0 (knm)=0(k @) = 0(k(wh)?)

The total computational complexity of
deblurring the whole image: The total
computational complexity of deblurring the
whole image by using non-box wise
method is the largest computational
complexity of the above steps. And this
largest value is obtained when evaluating
the 1 matrix giving computational
complexity of O((wh)?).

3.5 Comparison of the Box-wise
Method of Deblurring with Other
Methods

As computed earlier, the box wise
deblurring method has computational
complexity of O(kmn(wh). By substituting
the values of k=45, m=25 and n=49, the
computational complexity becomes
(55125(wh)) . A typical printing size of
an image has a resolution of 540 x 360
pixels giving a total pixel size of
wh=194,900[25]. Thus, for such an average
sized image, it can be seen that the
computational complexity is equivalent to
0((wh)?). Applying IHT for the whole
image, without using box-wise approach
has  computational  complexity  of
0((wh)?). Directly inverting the y matrix
by Gauss Jordan method to get the original
image has computational complexity of
0((wh)?) [26] while the Lucy-Richardson
algorithm has computational complexity of
0(k(wh)3) [27], [28].

3.6 Limitations of our work

When normally (non-box-wise) convolved
images were attempted to be deblurred with
the box-wise deblurring method, the

process resulted in no deblurring at any
number of iterations. The reason behind
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this is the mirroring used in the 7x7 boxes
of the images while deriving the deblurring
model. Here, the box size and the kernel
size used are the same resulting in only the
central pixel to be convolved in the normal
way without mirroring. This has resulted in
too much approximation in the box-wise
method so that a normally convolved image
couldn’t be deblurred using the given way.

4. CONCLUSIONS

In this paper, a box-wise method of
deblurring images using compressive
sensing has been introduced. When applied
to box-wise convolved images, this box-
wise deblurring method has been found to
be computationally more efficient than
using the non-box wise counterpart or using
the direct matrix inversion method. The
method  also  exhibited a  better
computational efficiency than the well-
known Lucy-Richardson deblurring.

However, when the box-wise deblurring
method was applied to normally convolved
images the results were not desirable. As it
i1s stated earlier, when the convolution is
done box-wise, mirroring is applied at those
pixel points which the kernel cannot cover
completely. When the box size and the
kernel size are the same, in the given case
7x7, only the central pixel of the box gets
convolved in a normal way and for the rest
of the 48 pixel mirroring must be done.
That means, only 2% of the box is
convolved in the conventional way which
results in the mismatch of the deblurring
model and normally convolved images.

To minimize the approximations resulting
from mirroring, the box size can be
increased. But this will be at the cost of
increasing the computational complexity
which is given by O(kmn(wh) where n is
the box size. Finding an optimum design
which minimizes the number of iterations,
k, and the value of m can compensate for
the increase in computational complexity
caused by increasing the box size. In doing
these, the deblurring method could be
applicable to normally convolved images

Journal of EEA, Vol. 43, December 2025

without its computational complexity being
compromised.

CONFLICT OF INTEREST

The authors declare that they have no
conflict of interest.

ACKNOWLEGMENTS

The authors are deeply grateful to God the
father, the Son and the Holy Spirit.

REFERENCES

[1] S. J. Reeves, "Image Restoration:
Fundamentals of Image Restoration",
in mic Press Library in Signal
Processing, Elseviear, 2014, pp. 165-
192.

[2] D. Singh, and . K. Sahu, R "A Survey
on Various Image  Deblurring
Techniques", International Journal of
Advanced Research in computer and
communication engineering, vol. 2, no.

12,2013.

[3] D. L. Donoho, "Compressive Sensing",
IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289-1306,
2006.

[4] E. J. Candes, and T. Tao, "Decoding
by Linear Programming", [EEE
Transactions on Information Theory,
vol. 51, no. 12, pp. 4203-4215, 2005.

[5] B Amizic, L. Spinoulas, R. Molina,
and A. K. Katsaggeolos, ,
"Compressive Blind Image
Deconvolution", IEEE Transactions on

Image Processing, vol. 22, no. 10, pp.
3994-4006, 2013.

[6] E.J. Candes, J. Romberg, and T. Tao,
"Robust Uncertainty Principle: Exact
Signal Reconstruction from Highly
Incomplete Frequency Information",
IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 489-509,
2006.

[7] D. L. Donoho, "For Most Large
Underdetermined Systems of Linear

104



Image Deblurring with Compressive Sensing

Equations the Minimal 1-norm
Solution is also the Sparsest Solution",
vol. 59, no. 6, pp. 797-829, 2006.

[8] E.J. Candes, "The Restricted Isometry
Property and its Implications for
Compressed Sensing", 2008.

[9] J. A. Tropp, "Just Relax: Convex
Programming Methods for Identifying
Sparse Signals in Noise", vol. 52, no.
3, pp. 1030-1051, 2006.

[10] M. A. Davenport, M. F. Duarte, Y. C.
Eldar, and G. Kutyniok, "Introduction
to Compressive Sensing" [Online].
Available: webee.technion.ac.il.

[I1]H. Cheng, "Modeling and Learning
Visual Recongintion Theory
Algorithms and Applications", 2015.
[Online]. Available:
www.Springer.com.

[12]1D. L. Donoho, and J. Tanner,
"Counting Faces of Random Projected
Polytopes when the Projections
Radically = Lowers  Dimensions",

Journal of the American Mathematical
Society, vol. 22, no. 1, 2006.

[13]J. A. Tropp, "Greed 1is Good:
Algorithmic  Results for  Sparse
Approximation", vol. 50, no. 10, pp.
2231-2242,2004.

[14]J. A. Tropp, and A. C. Gilbert, "Signal
Recovery from Random Measurement
via Orthogonal Matching Pursuit", vol.
53, no. 12, 2007.

[15] S. G. Mallat, and Z. Zhang, "Matching
Pursuits with Time-Frequency
Dictionaries", IEEE Transactions on
Signal Processing, 1993.

[16] S. G. Mallat, G. Davis, and Z. Zhang,
"Adaptive Time Frequency
Decompostions with Matching
Pursuits", SPIE Journal of Optical
Engineering, vol. 33, pp. 2183-2191,
1994.

Journal of EEA, Vol. 43, December 2025

[17] D. Needell, and J. A.Tropp, "CoSamp:
Iterative  signal  recovery  from
incomplete and inaccurate samples",
Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pp. 301-321,
2009.

[18] T. Blumensath, and M. E. Davis,
"Iterative Thresholding for Sparse
Approximations", Journal of Fourier

Analysis and Applications, vol. 14, no.
5, pp. 629-654, 2008.

[19] A. Tavakoli, and A. Pourmohammad,
"Image  Denoising  Based on
Compressed Sensing", International
Journal of Computer Theory and
Engineering, vol. 4, no. 2, 2012.

[20]J. Yu, Z. Chang, C. Xiao and W. Sun,
"Blind Image Deblurring Based on
Sparse Representation and Structural
Self-similarity", in 42th International
Conference on Accoustics, Speech and
Signal Processing, 2017.

[21]C. A. Metzler, A. Maleki, and R.
Baraniuk, "From Denoising to
Compressed Sensing", IEEE

Transactions on Information Theory,
2014.

[22] W. Kang, E. Lee, S. Kim, D. Seo, and
J. Paik, "Compressive Sensing Based
Image Denoising Using Adaptive
Multiple Samplings and
Reconstruction Error Control",
Proceedings of SPIE- The
International  Society for Optical
Engineering, vol. 8365, 2012.

[23] Ludwig, J., "Satellite Digital Image
Analysis”, [Online]. Available:
web.pdx.edu.

[24] Blumensath, T. and Davis M. E.,
"Iterative Hard Thresholding for
Compressed Sensing", Applied and
Computational Harmonic Analysis,
vol. 27, no. 3, pp. 256-274, 2009.

105



Rahel Berhanu Dibeya and Fitsum Assamnew Andargie

[25] "Image  Resolution and  DPI
Requirement"”, Walgreen Co., 24 07
2017. [Online]. Available:
http://wagcco.secure.force.com.
[Accessed 28 09 2021].

[26] Farebrother, R., "Linear Least Square
Computations”, STATISTICS, 1988.

Journal of EEA, Vol. 43, December 2025

[27] Lucy, L. B., "An Iterative Technique
for the Rectification of Observed
Distributions”, Astronomical Journal,

vol. 79, no. 6, 1974.

[28] Richardson, W. H., "Bayesian-Based
Iterative Method of  Image
Restoration", Journal of the Optical

Society of America, vol. 62, no. 1,
1972.

106



