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ABSTRACT 

The fixed spectrum allocation (FSA) policy 

causes a waste of valuable and limited 

natural resources because a significant 

portion of the spectrum allocated to users 

is unused. With the exponential growth of 

wireless devices and the continuous 

development of new technologies 

demanding more bandwidth, there is a 

significant spectrum shortage under 

current policies. Dynamic spectrum access 

(DSA) implemented in a cognitive radio 

network (CRN) is an emerging solution to 

meet the growing demand for spectrum 

that promises to improve spectrum 

utilization, enabling secondary users (SUs) 

to utilize unused spectrum allocated to 

primary users (PUs). This study has 

addressed all the limitations of the 

previous studies by implementing a 

comprehensive approach that encompasses 

reliable spectrum sensing, potential 

candidate spectrum band identification, 

long-term adaptive prediction modeling, 

and quantification of improvements 

achieved in the prediction model. The 

Long-Short Term Memory (LSTM) Deep 

Learning (DL) model was proposed as a 

solution for this study to address the 

challenge of capturing temporal dynamics 

in sequential inputs. The LSTM model 

leverages a gating mechanism to regulate 

information flow within the network, 

allowing it to learn and model long-term 

temporal dependencies effectively. The 

dataset used for this study was obtained 

from a real-world spectrum measurement 

by employing the Cyclostationary Feature 

Detection (CFD) approaches in the 

GSM900 mobile network uplink band, 

spanning a frequency range of 902.5 to 

915 MHz over five consecutive days. The 

dataset comprises a total of 225,000 data 

points. The five-day spectrum measurement 

data analysis yielded an average spectrum 

utilization of 20.47 %. The proposed model 

predicted the spectrum occupancy state for 

5 hours ahead in the future with an 

accuracy of 99.45 %, improved the 

spectrum utilization from 20.47 % to 98.28 

% and reduced the sensing energy to 29.39 

% compared to real-time sensing. 

Keywords: Cognitive radio spectrum, 

Deep learning, Dynamic spectrum access, 

Spectrum occupancy.  

1. INTRODUCTION 

The Radio Frequency (RF) spectrum is 

considered a limited and valuable natural 

resource used for various wireless 

communication systems, encompassing 

voice radio, digital terrestrial television 

(DTT), mobile telephony, and mobile 

broadband (MBB) [1]. The RF spectrum 

spans a wide range of electromagnetic 

waves demonstrating a direct relationship 

with their wavelength. Lower frequencies 

can propagate over longer distances and 

exhibit superior penetration through 

building walls. This characteristic makes 

them well-suited for applications such as 

broadcasting in expansive geographic 

areas. On the other hand, higher 

frequencies offer advantages in 

microelectronic devices like cell phones 

due to their shorter wavelengths that enable 

the use of proportionally smaller antennas, 

allowing these devices to transmit larger 

volumes of data [2].   

As wireless technologies continue to 

advance, effective allocation and access 

remain essential for sustaining the growth 
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and reliability of wireless communication 

systems because they are limited resources 

that cannot be simultaneously used for 

different services due to interference. The 

demand for spectrum has increased 

dramatically due to the exponential growth 

of wireless devices and the continuous 

development of new bandwidth-hungry 

technologies. This has resulted in a 

spectrum scarcity, further increasing its 

commercial value. Spectrum stakeholders 

must, therefore, develop adaptable 

strategies to use the spectrum efficiently, 

meeting both current and future spectrum 

standards [1], [2], [3]. The current fixed 

spectrum allocation (FSA) policy is not 

addressing the growing demand for 

spectrum due to its rigid command-and-

control approach, which assigns channels 

to a single user. This inefficient allocation 

can lead to the wastage of spectrum and a 

decrease in the quality of service. 

However, studies have shown that 

significant portions of the spectrum 

assigned to licensed users are unused, 

indicating the need for a more dynamic and 

responsive spectrum allocation policy [4], 

[5], [6].   

Dynamic spectrum access (DSA) 

implemented in (CRNs) has emerged as a 

solution to improve spectrum utilization 

and reduce spectrum waste by allowing 

secondary users (SUs) to share unused 

portions with (PUs) [7]. CRNs comprise 

two types of users i.e., PUs and SUs, where 

PUs have a higher priority than SUs in 

accessing the channels. The SUs logically 

divides the channels allocated to the PUs 

into slots. Within each slot, the SUs has to 

sense the PU channel slot and accordingly 

access the slot when idle. The idle slots are 

called spectrum holes or white spaces [4]. 

This approach enhances spectrum 

utilization, accommodating the growing 

demand for wireless connectivity that 

enables more devices to be connected [8], 

[9].  Spectrum sharing requires knowledge 

of spectrum usage patterns, which can be 

obtained through spectrum sensing. 

However, real-time spectrum sensing is 

considered unreliable because of energy 

and time consumption. Spectrum 

occupancy state prediction is a technique 

that forecasts the future states of the 

spectrum proactively and estimates the 

effective bandwidth in the next slot 

allowing SUs to adjust their data rates in 

advance used to improve spectrum sensing. 

Therefore, SUs can conserve energy and 

time by avoiding the busy portions of the 

spectrum and focusing on idle portions 

during sensing [4], [7]. Spectrum 

occupancy state prediction which infers the 

future states of the spectrum channel, is a 

key enabler for shared spectrum access in 

the DSA model.  Proactive spectrum 

prediction allows SUs to identify and 

access idle spectrum channels before they 

become busy [7], [10], [11]. SUs in CRNs 

search for idle spectrum channels to use 

temporarily. They are equipped with the 

cognitive ability to effectively implement 

the CR, which performs the following 

cycle of functions: Sensing: to observe and 

sample spectral channels, Decision: to 

allocate suitable spectral holes, Sharing: to 

contend access with other SUs, and 

Mobility: to evacuate the spectral hole 

when a PU is present [11]. CRs have 

distinct characteristics that distinguish 

them from traditional radio systems and 

Software-Defined Radios (SDRs). These 

distinctive characteristics are a cognitive 

capability that enables the identification of 

the occupancy state and usage patterns of 

the spectrum channels and 

reconfigurability which allows them to 

adjust their operating parameters 

dynamically [12], [13], [14].  CRNs are 

intelligent networks capable of 

autonomously learning and dynamically 

adapting to optimize spectrum, which is 

inherent in the adaptability of DL models 

that excel in learning complex patterns 

from data to make informed decisions. The 

integration of DL models into CRNs with 

the capacity to analyze vast amounts of 

data and enhance the awareness of CRNs 

about their operating environment holds 

significant potential in spectrum-sharing 
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models. The DL models can adapt and 

learn from the changing spectrum state 

conditions, allowing CRNs to dynamically 

optimize their communication parameters, 

spectrum channels, and transmission 

scenarios. Therefore, the synergy presents 

a relationship where DL's learning 

capabilities empower CRNs with enhanced 

situational awareness for intelligent 

decision-making  [15], [16].  

A distributed spectrum management 

framework for mobile edge computing 

(MEC)-based Cognitive Radio Internet of 

Things (CR-IoT) networks was proposed to 

integrates edge computing that enhance 

real-time decision-making and reduce 

latency in spectrum allocation [17]. Using 

a game-theoretic and optimization-based 

approach, it enables efficient and 

autonomous spectrum sharing among IoT 

devices while minimizing interference. 

Simulation results demonstrate improved 

spectrum utilization, energy efficiency, and 

network throughput compared to 

traditional centralized spectrum 

management methods.  

A joint resource allocation and user 

association framework was proposed for 

multi-cell Integrated Sensing and 

Communication (ISAC) dense networks 

[18]. Interference models for sensing and 

communication were established, and a 

utility-maximization problem was 

formulated under SINR and power 

constraints. A greedy genetic sub-band 

allocation, Hungarian-based user 

association, and SCA-based power control 

were used to solve the non-convex 

problem. Simulations showed notable 

improvements in network utility and 

detection probability while balancing 

sensing–communication trade-offs. 

Recent studies on machine learning-based 

spectrum occupancy prediction focus on 

improving the efficiency of spectrum 

utilization in CRNs [19]. Techniques such 

as SVM, Artificial Neural Networks 

(ANN), CNN, Recurrent Neural network 

(RNN), and ensemble models have been 

widely applied to predict temporal and 

spatial spectrum usage patterns. 

Researchers emphasize that deep learning 

models outperform traditional statistical 

methods in capturing nonlinear and 

dynamic spectrum behaviors. However, 

challenges remain in data scarcity, real-

time prediction, and generalization across 

frequency bands. 

This study has achieved promising results 

in solving the limitations of previous 

studies. In general, the main contributions 

of this study are: 

1. Defining the PU channel 

characterization in a new mode in a 

time-domain approach called CFD to 

characterize primary user states.  

2. Identifying the potential candidate 

spectrum band for a CR deployment 

through proper spectrum utilization and 

techno-economic analysis. 

3. Developing an improved long-term 

spectrum occupancy state prediction 

that can predict the spectrum 

occupancy state of how long it will be 

busy and idle, which allows the SUs to 

improve spectrum access, reduce 

channel-switching costs, and increase 

the CRN throughput.  

4. Quantifying the improvements 

achieved in the spectrum occupancy 

state prediction model. 

2. STATEMENT OF THE PROBLEM  

In spectrum sensing, parametric 

approaches rely on prior information about 

(PU) activity, whereas in many real-world 

cases, such information is unavailable. 

Consequently, nonparametric sensing 

methods, particularly Energy Detection 

(ED), are widely used due to their low 

computational complexity and ease of 

implementation [20]. However, the 

wireless environment introduces issues 

such as fading and hidden node problems, 

causing an exponential decay of field 

strength during transmission. This makes 

threshold selection difficult at low signal-
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to-noise ratios (SNRs), rendering ED 

inefficient and interference-prone in 

Cognitive Radio (CR) systems [8], [9], 

[13]. In contrast, the parametric sensing 

approach known as (CFD) outperforms ED 

because it exploits the spectral correlation 

of cyclostationary signals—a property 

absent in noise. This allows CFD to 

operate effectively in low SNR regions, 

remain robust to noise uncertainty, and 

deliver superior performance when prior 

information about the PU signal is 

available [13], [14]. 

Traditional statistical models such as 

Autoregressive Integrated Moving Average 

(ARIMA), Hidden Markov Model (HMM) 

and Markov Chains and machine learning 

algorithms assume spectrum occupancy 

states as stationary processes, implying that 

they remain constant over time and are 

suitable for short-term predictions [6], 

[21]. ANNs are less effective for modeling 

temporal data due to the absence of 

memory elements. RNNs have been 

employed for such tasks; however, they 

face challenges, such as the vanishing 

gradient problem, hindering their ability to 

capture long-term dependencies [7], [20]. 

LSTM neural networks have been 

introduced to address the vanishing 

problem. LSTMs overcome the vanishing 

gradient problem by incorporating memory 

cells, allowing them to retain information 

over extended periods. This feature is 

particularly advantageous for modeling 

temporal data, such as spectrum occupancy 

[15], [20], [21]. Long-term spectrum 

occupancy state prediction plays a crucial 

role in anticipating the channel idle period 

duration, which reduces channel switching 

costs and enhances channel selection in 

CRNs.  

3. SYSTEM MODEL 

The heterogeneous spectrum occupancy 

state model was used to implement a CRN 

for spectrum sharing in a DSA model [15]. 

The spectrum band has been divided into k 

contiguous channels. The channel states 

represent the spectrum channel state at 

time t and are denoted by a vector 

matrix.   Each element in the matrix 

represents the corresponding channel is 

occupied or idle which is ready to be used 

by the SUs [22]. A heterogeneous spectrum 

occupancy state model has multiple PUs 

and SUs, which are centrally controlled by 

a database that identifies the spectrum 

occupancy states based on prediction [4]. 

This study has proposed a long-term 

spectrum occupancy state prediction model 

in a stationary location by exploiting the 

spectral and temporal correlation of the 

data. The occupancy of a channel is 

characterized by the presence of a primary 

user signal, while the presence of a 

spectrum hole characterizes the vacancy of 

a channel. These cases are formally stated 

as hypotheses (H0) and (H1).   

 

𝐻0: 𝑦[𝑡] = 𝑤[𝑡]   when there is no PU 

𝐻1: 𝑦[𝑡] = ℎ[𝑡]𝑥[𝑡] + 𝑤[𝑡] when 

PU’s signal is present        (1) 

where x[t] denotes the PU signal, w[t] is 

white noise and y[t] is the received signal 

at 𝑡𝑡ℎ time instant.   𝐻0, the null hypothesis 

indicates the noise samples while 𝐻1, the 

alternate hypothesis indicates the presence 

of PU signal along with noise 𝑡𝑡ℎ  instant 

[6], [8], [12].  

 

Figure 1 Spectrum channels occupancy state 

modeling 

For the sequentially obtained time-series 

spectrum occupancy measurement data X1, 

X2, X3, X4,…, the long-term spectrum 

channel state prediction using the deep 

learning model can be done within the 

sequence-to-sequence neural network 

architecture based on the LSTM deep 

learning model is defined as (Xt-n,…., Xt-2, 
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Xt-1) to (Xt, Xt+1,…., Xt+m) where n and m 

represents the historical observations and 

the future instants in time, respectively 

[23].  

3.1 Time-Series Model Analysis  

Time series data is composed of sequence 

data points measured over regular 

intervals. Time series models are designed 

to comprehend the patterns and trends 

inherent in the data that can feat the natural 

temporal ordering. This shows that 

observations closer in time are more 

similar than further apart observations 

because values in a time series data at a 

given time were derived from past values. 

Time series analysis is a methodology used 

to study time series data that identifies 

relationships and makes predictions of 

future values [24]. Time series data 

analysis begins by identifying whether the 

data is stationary or non-stationary. A 

stationary time series has consistent 

statistical properties, including mean, 

variance, and autocorrelation. This stability 

implies that the underlying data-generating 

process is predictable and stable. On the 

contrary, non-stationary time series data 

displays varying statistical properties over 

time, often influenced by trends, 

seasonality, or other non-random 

fluctuations. Time series prediction is a 

technique that estimates future values 

based on historical data. In spectrum 

occupancy state prediction, the objective is 

to forecast the spectrum occupancy state at 

the next time point [24], [25].  

Time series data should be selected 

carefully, considering the different 

variations that can occur at different 

timescales. For example, a day can have 

four seasons (morning, afternoon, evening, 

and night), while a week can have only two 

(weekday and weekend). The spectrum 

occupancy data can vary significantly 

depending on the time of day, day of the 

week, and peak or trough times. Therefore, 

representative data must be chosen for the 

specific period and timescale of interest 

[26].  

3.2 Privacy Concerns of Urban 

Spectrum Sensing  

Urban spectrum sensing involves the 

collection and analysis of spectrum usage 

data from multiple SUs distributed across 

densely populated areas. While such 

collaborative or crowdsourced sensing 

improves the accuracy of spectrum 

occupancy prediction and the efficiency of 

spectrum utilization, it also introduces 

significant privacy concerns [27]. These 

arise primarily from the collection of user-

related information that may inadvertently 

reveal sensitive details about a user's 

location, behavior, and communication 

patterns [27], [28]. 

 Sources of Privacy Risks 

i) Location Disclosure: Spectrum 

sensing data often includes information 

about the spatial position of 

participating SUs. Since sensing reports 

are typically associated with the 

geographical coordinates of the 

sensors, malicious entities or untrusted 

fusion centers can infer the exact 

location or movement patterns of users 

[29]. 

ii) Activity Inference: The frequency and 

timing of sensing reports can reveal 

user activities or communication habits. 

For example, consistent sensing from a 

specific location or time interval can 

indicate when a user is active, which 

networks they are connected to, or even 

which applications are being used [27]. 

iii) Data Correlation and Identification: 

Aggregated sensing data from multiple 

users may be correlated to re-identify 

individuals even when identifiers are 

removed. Advanced data mining or 

machine learning techniques can 

exploit these correlations to infer 

private user attributes [30]. 

iv) Malicious Data Collection: In 

cooperative sensing scenarios, 

untrusted or compromised nodes can 

collect data not only for spectrum 
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purposes but also for unauthorized 

surveillance, traffic analysis, or 

profiling [28], [31]. 

 Privacy Preservation Mechanisms 

To mitigate these risks, several privacy-

preserving spectrums sensing schemes 

have been proposed. These mechanisms 

aim to balance data utility with user 

confidentiality, ensuring that accurate 

spectrum decisions can still be made 

without compromising user privacy. 

i) Data Anonymization: This technique 

removes or obscures identifiable 

information before transmitting sensing 

data to the fusion center. However, 

anonymization alone is often 

insufficient, as de-anonymization 

attacks can exploit contextual data [32]. 

ii) Differential Privacy: Differential 

privacy adds controlled random noise 

to sensing data, preventing adversaries 

from accurately inferring individual 

user contributions. It provides 

quantifiable privacy guarantees while 

maintaining statistical data utility [33]. 

iii) Cryptographic Techniques: 

Homomorphic encryption allows 

users to encrypt their sensing data so 

that the fusion center can perform 

computations without accessing the 

raw data, and secure multiparty 

computation (SMC) enables 

distributed users to collaboratively 

compute spectrum availability without 

revealing their individual inputs [28], 

[32]. 

iv) Decentralized and Edge-Based 

Sensing: Instead of central data 

aggregation, edge computing 

approaches process data locally on user 

devices or local base stations, 

transmitting only aggregated or 

decision-level information. This 

significantly reduces the exposure of 

raw sensing data [30], [32]. 

3.3 Proposed Deep Learning LSTM 

Architecture 

The proposed model can accurately predict 

the spectrum occupancy state for the next 

time slot and several time slots ahead, 

implemented to facilitate a DSA. This 

model enables users to access spectrum 

channels that are not used by PUs, 

enhancing overall spectrum utilization 

efficiency. (Figure 2). 

 

 

 

Figure 2 Basic Architecture of the LSTM model  

The LSTM model used for long-term 

spectrum occupancy state prediction 

targets specific frequencies or channels, 

using known binary values for state 

estimation. Input and output data are 

constructed via a sliding window across 

both time and frequency axes, forming a 

2D matrix where each element represents a 

time–frequency point with its binary state. 

This matrix constitutes the training dataset. 

During validation, the model demonstrates 

real-time prediction capability, using past 

spectrum measurements over time and 

frequency lags to predict the next state. 

The binary grid input yields corresponding 

binary outputs for the subsequent instant 

[34]. Unlike conventional RNNs, which 

struggle with long-range dependencies due 

to the vanishing gradient problem, LSTMs 

effectively model such temporal dynamics. 

LSTM networks address the problem of 

long-term dependency by introducing a 

gating mechanism that regulates the flow 

of information within the network. The 

mechanism consists of three gates the 

input, forget, and output gates and a cell 
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memory used to retain information over 

long periods [7], [15]. 

1) Input gate: Controls how much new 

information is added to the LSTM's 

memory state. 

2) Forget gate: Determines how much 

previous information is discarded. 

3) Output gate: Regulates how much of 

the cell memory is passed to the next 

hidden state. The gates are mathematically 

formulated as:  

𝑖𝑡 = σ(𝑊𝑖𝑥𝑋𝑡 + 𝑊𝑖ℎℎ𝑡−1 
+ 𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖) 

  𝑓𝑡 = σ (𝑊𝑓𝑥𝑋𝑡 + 𝑊𝑓ℎℎ𝑡−1 
+ 𝑊𝑓𝑐𝑐𝑡−1 

+ 𝑏𝑓) 

    𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡−1 + 𝑖𝑡

◦ φ(𝑊𝑐𝑥𝑋𝑡 + 𝑊𝑐ℎℎ𝑡−1 

+ 𝑏𝑐) 

𝑜𝑡 = σ(𝑊𝑜𝑥𝑋𝑡 + 𝑊𝑜ℎℎ𝑡−1 
+ 𝑊𝑜𝑐𝑐𝑡 + 𝑏0) 

                                                                     ℎ𝑡 =
𝑜𝑡 ◦ φ (𝑐𝑡)           (2) 

Where i, f, o, and c denote the input gate, 

forget gate, output gate, and cell state, 

respectively. Each gate has the same 

dimension as the hidden vector h (N ×1). 

Here σ is a sigmoid function, and φ is a 

nonlinear function mapping to the range [-

1, 1]. Wic, Wfc, and Woc are the peephole 

connection matrices linking the cell state to 

their respective gates, while Wix, Wfx, Wox, 

and Wcx are input weight matrices 

connecting the input vector 𝑋𝑡 (M × 1) to 

the gates and cell state. Because of the 

gates and the input vector Xt have the 

dimensions of N ×1 and M × 1 

respectively. The matrices Wih, Wic, Wfh, 

Wch, Woh, Woc   are all of dimensions N × N, 

and Wix, Wfx, Wcx and Wox are of 

dimensions N × M.      

4. RESULTS AND DISCUSSION  

4.1 Data Description  

The data used for this study was collected 

from a real-world spectrum measurement 

in Addis Ababa, Ethiopia using the TCI 

spectrum monitoring system in the 

GSM900 MHz mobile network uplink 

band spanning from 902.5 to 915 MHz for 

five consecutive days from January 28th to 

February 1st, 2021. The area of Bole was 

selected for the measurement because it is 

a commercial area that expects to have a 

high spectrum demand [35]. The data set 

comprised a total of 450,000 data points, 

captured with a resolution bandwidth of 

100 kHz with 4 minutes resolution time. 

The GSM900 MHz uplink band was 

selected for this study to deploy a CR due 

to its underutilization from the sparse use 

of its users communicating on the network 

making it a promising potential candidate 

for a CR deployment [36], [37].The dataset 

contains features including Channel, 

Frequency, Maximum occupancy (%), 

Average occupancy (%), Maximum field 

strength, and Average field strength. 

However, all these features were not used 

for modeling spectrum occupancy due to 

their inability to capture unique 

information and their potential negative 

impact on the model's generalization. To 

address this issue, a feature reduction 

technique was employed to reduce the 

number of input variables, thus preventing 

excessive model complexity while 

preserving its ability to generalize 

effectively. In this study, a filter-based 

feature selection approach was utilized, 

which relies on statistical measures such as 

information gain, to identify features that 

contribute the most information about the 

target variable which exclusively considers 

the association between each feature and 

the class label [38]. Following the feature 

reduction process, the selected features for 

predicting spectrum occupancy state 

comprised frequency, average occupancy, 

and average field strength.  

The spectrum measurement campaign that 

was conducted in the GSM900 MHz 

mobile network uplink band at four 

different regional cities in October 2021 

has an average utilization of 21.45 % in 

Adama, 16.21 % in Bahir Dar, 18.87 % in 
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Hawassa, and 33.52 % in 

Jigjiga.  Additionally, within Ethio-

telecom's mobile network uplink bands in 

Addis Ababa, utilization was found to be 

14.72 % in GSM 900MHz, 31.67 % in 

UMTS 900MHz, 25.32 % in LTE 

1800MHz, and 6.75 % in LTE 2600MHz. 

The analysis indicates the underutilization 

of the spectrum. Even though all of the 

spectrum bands are underutilized, 

subscribers would migrate from 2G to 3G, 

4G, and 5G to get the advanced technology 

features and services from these new-

generation mobile networks because the 

900MHz GSM offers only voice and short 

message services (SMS) [39]. For this 

reason, there is no need of considering 3G, 

4G/LTE and 5G networks in our work. 

The spectrum utilization analysis 

conducted in five days revealed distinct 

values for weekdays (Thursday, Friday, 

and Monday) and weekends (Saturday and 

Sunday). Specifically, the average 

spectrum utilization on weekdays was 

19.13 %, 19.03 %, and 21.14 %, 

respectively. In contrast, the average 

spectrum utilization on weekends exhibits 

a variation, with values of 17.3 % on 

Saturday and a higher utilization rate of 

25.76 % on Sunday.  

The CFD-based spectrum sensing method 

was used in this study for defining PU 

channel characterization and modeling 

spectrum occupancy prediction due to its 

enhanced performance in challenging SNR 

conditions.  In a five-day spectrum 

measurement campaign conducted using 

the CFD spectrum sensing method, the 

average spectrum utilization for the GSM 

900 MHz uplink band was 20.47 %.  

4.2  Results  

This study utilizes data obtained via the 

CFD-based spectrum sensing method to 

develop the spectrum occupancy state 

prediction model. The dataset encompasses 

225,000 data points, representing half of 

the five-day measurement dataset. 

Subsequently, this dataset is divided into 

training and validation sets, maintaining an 

80 % to 20 % ratio, we should notice that 

this is done to minimize the risk of 

overstated generalizability. The spectrum 

occupancy state prediction model was 

implemented using Python programming 

with the Keras library. The model's 

configuration was evaluated based on 

metrics such as the loss function and 

accuracy (Figure 3). Throughout the 

training process, various hyperparameter 

combinations were explored to identify the 

most effective model that has the lowest 

loss and the highest accuracy. Finally, the 

model architecture comprises three LSTM 

layers with 128 units, followed by two 

dropout layers with a dropout rate set at 

0.1. Additionally, two dense layers with 

128 and 64 units, were incorporated, along 

with a final output layer.  The model was 

configured with an activation function of 

rectified linear unit (ReLU) for all hidden 

layers and sigmoid for the output layer, 

adaptive moment estimation (ADAM) as 

an optimizer, binary cross-entropy as a loss 

function, 0.001 learning rate, 128 batch 

size, and 400 Epochs. Three sets of 

experiments designed to predict short-term 

and long-term (ranging from three to five 

hours) predictions conducted on the 

proposed LSTM model have exhibited 

consistent results across all performance 

evaluation metrics with an accuracy of 

99.45 %.  
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Figure 3 Training and validation, loss and accuracy for the LSTM model for 5-hours ahead prediction  

 

Figure 4 Spectrum occupancy state prediction in LSTM for the 904.1MHZ channel 

 

Figure 4 compares the spectrum occupancy 

state actual data, training, and testing 

prediction performed for the 904.1MHZ 

channel. The LSTM network is trained to 

adapt new spectrum occupancy states, as 

shown in Figure 4, using the five-day 

spectrum measurement data for a one-

channel 904.1MHz. In the graph, the 

brown dotted line representing the training 

data and the green dotted line representing 

the testing data closely match the actual 

observations depicted by the blue solid 

line. The test performance indicates an 

accuracy of 96 %. 

A comparative analysis conducted on 

LSTM, Bi-LSTM, and ConvLSTM models 

for both short-term and long-term 

prediction revealed that LSTM and Bi-

LSTM achieved equal results, with an 

accuracy of 99.45 %. In contrast, the 

ConvLSTM model outperforms them, 

achieving an accuracy of 99.72 %. Across 

all three models, each term of prediction 

has equal performance results. However, 

the short-term prediction achieved its 

targeted accuracy earlier than the long-term 

3-hour and 5-hour predictions. The 3-hour 

long-term prediction achieved its targeted 

accuracy earlier than the 5-hour long-term 

prediction.  
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Figure 5 Comparison of models in Accuracy, Precision, and F1-Score   

 

The Bi-LSTM model differs from the 

others by achieving its targeted accuracy 

earlier across all prediction scenarios. This 

may be attributed to its ability to process 

data in both forward and backward 

directions, potentially improving its ability 

to learn temporal 

relationships.  Consequently, short-term 

predictions tend to achieve better accuracy 

earlier than long-term predictions. This 

tendency may arise from factors such as 

predicting the immediate future requires 

fewer data points and simpler relationships, 

and the available data for training the 

model can be enough for short-term 

prediction than for long-term prediction.  

 Figure 6 Comparison of models in MSE, RMSE, 

MAE, and MAPE  

4.3 Discussions                

Long-term spectrum occupancy state 

prediction using the LSTM model to 

implement a CR has improved spectrum 

utilization and reduced sensing energy. 

 Improvement in Spectrum Utilization 

Spectrum occupancy state prediction can 

improve spectrum utilization by allowing 

SUs to select and use idle PU channels 

with appropriate time slots. This allows the 

SUs to select spectrum channels efficiently 

to reduce channel-switching costs and 

increase network throughput. In a CRN the 

PUs has two states, but the SU can sense 

only one channel at a time. The CRN has 

two types of SUs which are the CRsense 

and the CRpredict. The CRsense  randomly 

selects a channel at every slot and senses 

the states of the channels, while the 

CRpredict device senses the states of the 

channels after prediction among those 

channels with an idle state. According to 

[4] spectrum utilization (SU) in the CRN 

can be defined as the ratio of the number of 

idle slots discovered by the SUs to the total 

number of idle slots available in the CRN.    

𝑆𝑈 =
Number of idle slots sensed

Total number of idle slots in the band
      (3) 
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Long-
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LSTM Bi-LSTM ConvLSTM

Accuracy 99.45 99.45 99.45 99.45 99.45 99.45 99.72 99.72 99.72

Precision 97.62 97.62 97.62 97.62 97.62 97.62 98.8 98.8 98.8

F1-Score 98.8 98.8 98.8 98.8 98.8 98.8 99.39 99.39 99.39
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The improvement in spectrum utilization 

due to spectrum prediction can be 

expressed as  

 

𝑆𝑈𝑖𝑚𝑝( %) =
𝑆𝑈𝑠𝑒𝑛𝑠𝑒− 𝑆𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑆𝑈𝑠𝑒𝑛𝑠𝑒
                 (4) 

       

   Where 𝑆𝑈𝑠𝑒𝑛𝑠𝑒 and 𝑆𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡 represent the 

spectrum utilization for the CRsense and the 

CRpredict devices, respectively. Substituting 

(3) in (4), 𝑆𝑈𝑖𝑚𝑝( %) can be given by 

 

             𝑆𝑈𝑖𝑚𝑝( %) =
𝐼𝑠𝑒𝑛𝑠𝑒− 𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝐼𝑠𝑒𝑛𝑠𝑒
             (5) 

 

Where 𝐼𝑠𝑒𝑛𝑠𝑒 and 𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡 represent the 

number of idle channels sensed by the 

CRsense and the number of idle channels 

predicted by the CRpredict devices 

respectively. This analysis can be 

translated into a machine learning model 

and becomes equal with the specificity that 

measures the true negative rate, which is 

the fraction of negative values that were 

correctly predicted that can be calculated as 

expressed in (6). 

 

         𝑆𝑈𝑖𝑚𝑝( %) = 𝑆𝑝𝑒𝑐𝑖𝑓𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (6) 

 

The SUimp ( %) in a CRN also improves the 

network throughput which shows the data 

rate achieved in the network due to the 

availability of more channels and can be 

calculated as expressed in (7).  

Throughput =  𝑆𝑈𝑖𝑚𝑝( %)* the number of 

channels in the spectrum band                (7) 

 Reduction in Sensing Energy 

The spectrum occupancy state prediction 

reduces the sensing energy required by the 

SUs. This is because the SUs in a CRN can 

sense only the idle channels. In a CRN the 

𝐶𝑅𝑠𝑒𝑛𝑠𝑒 device senses all the channels 

whereas the 𝐶𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡  device only senses 

the channel that is predicted idle. 

 In other words, when the channel state is 

predicted to be busy, the sensing operation 

is not performed to reduce energy. 

Considering that one unit of sensing energy 

is required to sense one slot, the total 

sensing energy required for a 𝐶𝑅𝑠𝑒𝑛𝑠𝑒  
device in a finite duration of time can be 

calculated as expressed in (8). 

 

𝑆𝐸𝑠𝑒𝑛𝑠𝑒 = (
Toatal number 

of slots 
in the duration

) ×

(
unit sensing 

 energy
)                                                          (8) 

 

while the total sensing energy required by 

the 𝐶𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡 device can be given by  

 

SEpredict

= (SEsense − (Bpreidct))

∗   (Unit sensing energy)                       (9) 

 

Where 𝐵𝑝𝑟𝑒𝑖𝑑𝑐𝑡 is the total number of busy 

slots predicted by the 𝐶𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡  device.  

Therefore, using (8) and (9), the percentage 

reduction in the sensing energy can be 

given by  

 

𝑆𝐸𝑟𝑒𝑑( %) =
𝑆𝐸𝑠𝑒𝑛𝑠𝑒 − 𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑆𝐸𝑠𝑒𝑛𝑠𝑒
 

=
𝐵𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑑𝑙𝑒 𝑠𝑙𝑜𝑡𝑠
                     (10) 

 

This can be translated to a machine 

learning model that measures a value by 

dividing the true positive value by the true 

negative plus the false positive values, 

even it doesn’t have an equivalent machine 

learning metric it can be calculated and 

expressed as shown in (11). 
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It should be noted that Equation (11) is 

derived from analytical formulations 

reported in the literature. This study 

extends these formulations by quantifying 

sensing energy reduction using machine 

learning metrics. The resulting expression 

links the analytical energy model to 

classification outcomes—true positives 

(TP), true negatives (TN), and false 

positives (FP). While conceptually similar 

to standard ML metrics, it is not equivalent 

to precision or recall. Accordingly, we 

define this parameter as representing 

the proportion of sensing energy saved 

through accurate spectrum state prediction. 

         𝑆𝐸𝑟𝑒𝑑( %) =
𝑇𝑃

𝑇𝑁+𝐹𝑃
                       (11) 

 The SUimp ( %), the network throughput, and 

the SEred ( %) across all models for all terms 

of predictions calculated based on (6), (7), 

and (11) are presented in Table 1.  

 

 

Table 1 Quantified improvements achieved in the spectrum occupancy state prediction 

Model 
 Length of Prediction   𝑺𝑼𝒊𝒎𝒑( %) Throughput  

 

𝑺𝑬𝒓𝒆𝒅( %) 

LSTM 
Short-Term 99.28 124.1 29.39 

 
Long-Term (3 hrs.) 99.28 124.1*45 29.39 

 
Long-Term (5 hrs.) 99.28 124.1*75 29.39 

Bi- LSTM 
Short-Term 99.28 124.1 29.39 

 
Long-Term (3 hrs.) 99.28 124.1*45 29.39 

 
Long-Term (5 hrs.) 99.28 124.1*75 29.39 

Conv-LSTM 
Short-Term 99.64 124.55 29.39 

 
Long-Term (3 hrs.) 99.64  124.55*45 29.39 

 
Long-Term (5 hrs.) 99.64 124.55*75 29.39 

5. CONCLUSION AND FUTURE 

WORK 

This study addresses the challenges posed 

by the rigidity of FSA policies. It paves the 

way for more effective and efficient 

spectrum utilization that optimizes scarce 

spectrum resources by predicting the 

spectrum occupancy state using a long-

term adaptive LSTM model and a 

historical dataset obtained through a 

reliable spectrum sensing method. The 

proposed model has successfully predicted 

the spectrum occupancy state for the 

subsequent five hours with an accuracy of 

99.45 % improved the spectrum utilization 

from 20.47 % to 98.28 % and reduced the 

sensing energy to 29.39 % compared to 

real-time sensing. Future studies can focus 

on enhancing the predictability of further 

occupancy lengths up to days for 

integrating CRN with the Internet of 

Things, which creates a synergistic system 

known as the (CRIoT). This integrated IoT 

and CR approach amplifies smart cities’ 

capability, providing a comprehensive and 

interconnected infrastructure for effective 

and efficient urban management.  
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