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ABSTRACT

The fixed spectrum allocation (FSA) policy
causes a waste of valuable and limited
natural resources because a significant
portion of the spectrum allocated to users
is unused. With the exponential growth of
wireless devices and the continuous
development  of new  technologies
demanding more bandwidth, there is a
significant  spectrum  shortage under
current policies. Dynamic spectrum access
(DSA) implemented in a cognitive radio
network (CRN) is an emerging solution to
meet the growing demand for spectrum
that promises to improve spectrum
utilization, enabling secondary users (SUs)
to utilize unused spectrum allocated to
primary users (PUs). This study has
addressed all the limitations of the
previous studies by implementing a
comprehensive approach that encompasses
reliable  spectrum  sensing, potential
candidate spectrum band identification,
long-term adaptive prediction modeling,
and  quantification of  improvements
achieved in the prediction model. The
Long-Short Term Memory (LSTM) Deep
Learning (DL) model was proposed as a
solution for this study to address the
challenge of capturing temporal dynamics
in sequential inputs. The LSTM model
leverages a gating mechanism to regulate
information flow within the network,
allowing it to learn and model long-term
temporal dependencies effectively. The
dataset used for this study was obtained
from a real-world spectrum measurement
by employing the Cyclostationary Feature
Detection (CFD) approaches in the
GSMY900 mobile network uplink band,
spanning a frequency range of 902.5 to
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915 MHz over five consecutive days. The
dataset comprises a total of 225,000 data
points. The five-day spectrum measurement
data analysis yielded an average spectrum
utilization of 20.47 %. The proposed model
predicted the spectrum occupancy state for
5 hours ahead in the future with an
accuracy of 99.45 %, improved the
spectrum utilization from 20.47 % to 98.28
% and reduced the sensing energy to 29.39
% compared to real-time sensing.

Keywords: Cognitive radio spectrum,
Deep learning, Dynamic spectrum access,
Spectrum occupancy.

1. INTRODUCTION

The Radio Frequency (RF) spectrum is
considered a limited and valuable natural
resource used for various wireless
communication systems, encompassing
voice radio, digital terrestrial television
(DTT), mobile telephony, and mobile
broadband (MBB) [1]. The RF spectrum
spans a wide range of electromagnetic
waves demonstrating a direct relationship
with their wavelength. Lower frequencies
can propagate over longer distances and
exhibit  superior penetration through
building walls. This characteristic makes
them well-suited for applications such as
broadcasting in expansive geographic
areas. On the other hand, higher
frequencies offer advantages in
microelectronic devices like cell phones
due to their shorter wavelengths that enable
the use of proportionally smaller antennas,
allowing these devices to transmit larger
volumes of data [2].

As wireless technologies continue to
advance, effective allocation and access
remain essential for sustaining the growth
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and reliability of wireless communication
systems because they are limited resources
that cannot be simultaneously used for
different services due to interference. The
demand for spectrum has increased
dramatically due to the exponential growth
of wireless devices and the continuous
development of new bandwidth-hungry
technologies. This has resulted in a
spectrum scarcity, further increasing its
commercial value. Spectrum stakeholders
must, therefore, develop adaptable
strategies to use the spectrum efficiently,
meeting both current and future spectrum
standards [1], [2], [3]. The current fixed
spectrum allocation (FSA) policy is not
addressing the growing demand for
spectrum due to its rigid command-and-
control approach, which assigns channels
to a single user. This inefficient allocation
can lead to the wastage of spectrum and a
decrease in the quality of service.
However, studies have shown that
significant portions of the spectrum
assigned to licensed users are unused,
indicating the need for a more dynamic and
responsive spectrum allocation policy [4],

[51, [6].

Dynamic  spectrum  access (DSA)
implemented in (CRNs) has emerged as a
solution to improve spectrum utilization
and reduce spectrum waste by allowing
secondary users (SUs) to share unused
portions with (PUs) [7]. CRNs comprise
two types of users i.e., PUs and SUs, where
PUs have a higher priority than SUs in
accessing the channels. The SUs logically
divides the channels allocated to the PUs
into slots. Within each slot, the SUs has to
sense the PU channel slot and accordingly
access the slot when idle. The idle slots are
called spectrum holes or white spaces [4].
This  approach  enhances  spectrum
utilization, accommodating the growing
demand for wireless connectivity that
enables more devices to be connected [8],
[9]. Spectrum sharing requires knowledge
of spectrum usage patterns, which can be
obtained through spectrum sensing.
However, real-time spectrum sensing is
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considered unreliable because of energy
and time  consumption.  Spectrum
occupancy state prediction is a technique
that forecasts the future states of the
spectrum proactively and estimates the
effective bandwidth in the next slot
allowing SUs to adjust their data rates in
advance used to improve spectrum sensing.
Therefore, SUs can conserve energy and
time by avoiding the busy portions of the
spectrum and focusing on idle portions
during sensing [4], [7]. Spectrum
occupancy state prediction which infers the
future states of the spectrum channel, is a
key enabler for shared spectrum access in
the DSA model. Proactive spectrum
prediction allows SUs to identify and
access idle spectrum channels before they
become busy [7], [10], [11]. SUs in CRNs
search for idle spectrum channels to use
temporarily. They are equipped with the
cognitive ability to effectively implement
the CR, which performs the following
cycle of functions: Sensing: to observe and
sample spectral channels, Decision: to
allocate suitable spectral holes, Sharing: to
contend access with other SUs, and
Mobility: to evacuate the spectral hole
when a PU is present [11]. CRs have
distinct characteristics that distinguish
them from traditional radio systems and
Software-Defined Radios (SDRs). These
distinctive characteristics are a cognitive
capability that enables the identification of
the occupancy state and usage patterns of
the spectrum channels and
reconfigurability which allows them to
adjust  their  operating  parameters
dynamically [12], [13], [14]. CRNs are
intelligent networks capable of
autonomously learning and dynamically
adapting to optimize spectrum, which is
inherent in the adaptability of DL models
that excel in learning complex patterns
from data to make informed decisions. The
integration of DL models into CRNs with
the capacity to analyze vast amounts of
data and enhance the awareness of CRNs
about their operating environment holds
significant potential in spectrum-sharing
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models. The DL models can adapt and
learn from the changing spectrum state
conditions, allowing CRNs to dynamically
optimize their communication parameters,
spectrum channels, and transmission
scenarios. Therefore, the synergy presents
a relationship where DL's learning
capabilities empower CRNs with enhanced
situational awareness for intelligent
decision-making [15], [16].

A distributed spectrum management
framework for mobile edge computing
(MEC)-based Cognitive Radio Internet of
Things (CR-IoT) networks was proposed to
integrates edge computing that enhance
real-time decision-making and reduce
latency in spectrum allocation [17]. Using
a game-theoretic and optimization-based
approach, it enables efficient and
autonomous spectrum sharing among IoT
devices while minimizing interference.
Simulation results demonstrate improved
spectrum utilization, energy efficiency, and
network  throughput  compared to
traditional centralized spectrum
management methods.

A joint resource allocation and user
association framework was proposed for
multi-cell ~ Integrated  Sensing  and
Communication (ISAC) dense networks
[18]. Interference models for sensing and
communication were established, and a
utility-maximization problem was
formulated under SINR and power
constraints. A greedy genetic sub-band
allocation, Hungarian-based user
association, and SCA-based power control
were used to solve the non-convex
problem. Simulations showed notable
improvements in network utility and
detection probability while balancing
sensing—communication trade-offs.

Recent studies on machine learning-based
spectrum occupancy prediction focus on
improving the efficiency of spectrum
utilization in CRNs [19]. Techniques such
as SVM, Artificial Neural Networks
(ANN), CNN, Recurrent Neural network
(RNN), and ensemble models have been
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widely applied to predict temporal and
spatial spectrum usage patterns.
Researchers emphasize that deep learning
models outperform traditional statistical
methods in capturing nonlinear and
dynamic spectrum behaviors. However,
challenges remain in data scarcity, real-
time prediction, and generalization across
frequency bands.

This study has achieved promising results
in solving the limitations of previous
studies. In general, the main contributions
of this study are:

1. Defining the PU channel
characterization in a new mode in a
time-domain approach called CFD to
characterize primary user states.

2. Identifying the potential candidate
spectrum band for a CR deployment
through proper spectrum utilization and
techno-economic analysis.

3. Developing an improved long-term
spectrum occupancy state prediction
that can predict the spectrum
occupancy state of how long it will be
busy and idle, which allows the SUs to
improve spectrum access, reduce
channel-switching costs, and increase
the CRN throughput.

4. Quantifying the improvements
achieved in the spectrum occupancy
state prediction model.

2. STATEMENT OF THE PROBLEM

In spectrum sensing, parametric
approaches rely on prior information about
(PU) activity, whereas in many real-world
cases, such information is unavailable.
Consequently, nonparametric  sensing
methods, particularly Energy Detection
(ED), are widely used due to their low
computational complexity and ease of
implementation  [20]. However, the
wireless environment introduces issues
such as fading and hidden node problems,
causing an exponential decay of field
strength during transmission. This makes
threshold selection difficult at low signal-

79



Addisu Melkie Tafere and Getachew Alemu Wondim

to-noise ratios (SNRs), rendering ED
inefficient and interference-prone in
Cognitive Radio (CR) systems [8], [9],
[13]. In contrast, the parametric sensing
approach known as (CFD) outperforms ED
because it exploits the spectral correlation
of cyclostationary signals—a property
absent in noise. This allows CFD to
operate effectively in low SNR regions,
remain robust to noise uncertainty, and
deliver superior performance when prior
information about the PU signal is
available [13], [14].

Traditional statistical models such as
Autoregressive Integrated Moving Average
(ARIMA), Hidden Markov Model (HMM)
and Markov Chains and machine learning
algorithms assume spectrum occupancy
states as stationary processes, implying that
they remain constant over time and are
suitable for short-term predictions [6],
[21]. ANNSs are less effective for modeling
temporal data due to the absence of
memory elements. RNNs have been
employed for such tasks; however, they
face challenges, such as the vanishing
gradient problem, hindering their ability to
capture long-term dependencies [7], [20].
LSTM neural networks have been
introduced to address the vanishing
problem. LSTMs overcome the vanishing
gradient problem by incorporating memory
cells, allowing them to retain information
over extended periods. This feature is
particularly advantageous for modeling
temporal data, such as spectrum occupancy
[15], [20], [21]. Long-term spectrum
occupancy state prediction plays a crucial
role in anticipating the channel idle period
duration, which reduces channel switching
costs and enhances channel selection in
CRNE.

3. SYSTEM MODEL

The heterogeneous spectrum occupancy
state model was used to implement a CRN
for spectrum sharing in a DSA model [15].
The spectrum band has been divided into k
contiguous channels. The channel states
represent the spectrum channel state at
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time t and are denoted by a vector
matrix. Each element in the matrix
represents the corresponding channel is
occupied or idle which is ready to be used
by the SUs [22]. A heterogeneous spectrum
occupancy state model has multiple PUs
and SUs, which are centrally controlled by
a database that identifies the spectrum
occupancy states based on prediction [4].
This study has proposed a long-term
spectrum occupancy state prediction model
in a stationary location by exploiting the
spectral and temporal correlation of the
data. The occupancy of a channel is
characterized by the presence of a primary
user signal, while the presence of a
spectrum hole characterizes the vacancy of
a channel. These cases are formally stated
as hypotheses (HO) and (H1).

Hy:y[t] = w[t] when there is no PU

Hy: y[t] = h[t]x[t] + w][t] when
PU’s signal is present (1)

where x[t] denotes the PU signal, w[t] is
white noise and y[t] is the received signal
at t'" time instant. H,, the null hypothesis
indicates the noise samples while Hy, the
alternate hypothesis indicates the presence
of PU signal along with noise t* instant

[6], [8], [12].

Binary

Occupancy ! ! }

Channels CH, CH; CHy

[ | |
[
Spectral Opportunities

Figure 1 Spectrum channels occupancy state
modeling

For the sequentially obtained time-series
spectrum occupancy measurement data Xi,
X2, X3, X4,..., the long-term spectrum
channel state prediction using the deep
learning model can be done within the
sequence-to-sequence  neural  network
architecture based on the LSTM deep
learning model is defined as (Xe,..., X2,
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Xt_l) to (Xt, Xtﬂ ,,,,,, Xt+m) where n and m
represents the historical observations and
the future instants in time, respectively
[23].

3.1 Time-Series Model Analysis

Time series data is composed of sequence
data points measured over regular
intervals. Time series models are designed
to comprehend the patterns and trends
inherent in the data that can feat the natural
temporal ordering. This shows that
observations closer in time are more
similar than further apart observations
because values in a time series data at a
given time were derived from past values.
Time series analysis is a methodology used
to study time series data that identifies
relationships and makes predictions of
future values [24]. Time series data
analysis begins by identifying whether the
data is stationary or non-stationary. A
stationary time series has consistent
statistical properties, including mean,
variance, and autocorrelation. This stability
implies that the underlying data-generating
process is predictable and stable. On the
contrary, non-stationary time series data
displays varying statistical properties over
time, often influenced by trends,
seasonality, = or  other  non-random
fluctuations. Time series prediction is a
technique that estimates future values
based on historical data. In spectrum
occupancy state prediction, the objective is
to forecast the spectrum occupancy state at
the next time point [24], [25].

Time series data should be selected
carefully, considering the different
variations that can occur at different
timescales. For example, a day can have
four seasons (morning, afternoon, evening,
and night), while a week can have only two
(weekday and weekend). The spectrum
occupancy data can vary significantly
depending on the time of day, day of the
week, and peak or trough times. Therefore,
representative data must be chosen for the
specific period and timescale of interest
[26].

Journal of EEA, Vol. 43, December 2025

3.2 Privacy Concerns of Urban
Spectrum Sensing

Urban spectrum sensing involves the
collection and analysis of spectrum usage
data from multiple SUs distributed across
densely populated areas. While such
collaborative or crowdsourced sensing
improves the accuracy of spectrum
occupancy prediction and the efficiency of
spectrum utilization, it also introduces
significant privacy concerns [27]. These
arise primarily from the collection of user-
related information that may inadvertently
reveal sensitive details about a user's
location, behavior, and communication
patterns [27], [28].

Sources of Privacy Risks

i) Location Disclosure: Spectrum
sensing data often includes information
about the spatial position of
participating SUs. Since sensing reports
are typically associated with the
geographical coordinates of the
sensors, malicious entities or untrusted
fusion centers can infer the exact
location or movement patterns of users
[29].

i1) Activity Inference: The frequency and
timing of sensing reports can reveal
user activities or communication habits.
For example, consistent sensing from a
specific location or time interval can
indicate when a user is active, which
networks they are connected to, or even
which applications are being used [27].

ii1) Data Correlation and Identification:
Aggregated sensing data from multiple
users may be correlated to re-identify
individuals even when identifiers are
removed. Advanced data mining or
machine learning techniques can
exploit these correlations to infer
private user attributes [30].

iv) Malicious Data Collection: In
cooperative sensing scenarios,
untrusted or compromised nodes can
collect data not only for spectrum
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purposes but also for unauthorized
surveillance, traffic  analysis, or
profiling [28], [31].

Privacy Preservation Mechanisms

To mitigate these risks, several privacy-
preserving spectrums sensing schemes
have been proposed. These mechanisms
aim to balance data utility with user
confidentiality, ensuring that accurate
spectrum decisions can still be made
without compromising user privacy.

i) Data Anonymization: This technique
removes or obscures identifiable
information before transmitting sensing
data to the fusion center. However,
anonymization  alone is  often
insufficient, as  de-anonymization
attacks can exploit contextual data [32].

i1) Differential Privacy: Differential
privacy adds controlled random noise
to sensing data, preventing adversaries
from accurately inferring individual
user  contributions. It  provides
quantifiable privacy guarantees while
maintaining statistical data utility [33].

ii1) Cryptographic Techniques:
Homomorphic encryption allows
users to encrypt their sensing data so
that the fusion center can perform
computations without accessing the
raw data, and secure multiparty
computation (SMCO) enables
distributed users to collaboratively
compute spectrum availability without
revealing their individual inputs [28],
[32].

iv) Decentralized @ and  Edge-Based
Sensing: Instead of central data
aggregation, edge computing
approaches process data locally on user

devices or local base stations,
transmitting only aggregated or
decision-level information. This

significantly reduces the exposure of
raw sensing data [30], [32].

Journal of EEA, Vol. 43, December 2025

33 Proposed Deep Learning LSTM
Architecture

The proposed model can accurately predict
the spectrum occupancy state for the next
time slot and several time slots ahead,
implemented to facilitate a DSA. This
model enables users to access spectrum
channels that are not used by PUs,
enhancing overall spectrum utilization
efficiency. (Figure 2).

Figure 2 Basic Architecture of the LSTM model

The LSTM model used for long-term
spectrum  occupancy state prediction
targets specific frequencies or channels,
using known binary values for state
estimation. Input and output data are
constructed via a sliding window across
both time and frequency axes, forming a
2D matrix where each element represents a
time—frequency point with its binary state.
This matrix constitutes the training dataset.
During validation, the model demonstrates
real-time prediction capability, using past
spectrum measurements over time and
frequency lags to predict the next state.
The binary grid input yields corresponding
binary outputs for the subsequent instant
[34]. Unlike conventional RNNs, which
struggle with long-range dependencies due
to the vanishing gradient problem, LSTMs
effectively model such temporal dynamics.
LSTM networks address the problem of
long-term dependency by introducing a
gating mechanism that regulates the flow
of information within the network. The
mechanism consists of three gates the
input, forget, and output gates and a cell
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memory used to retain information over
long periods [7], [15].

1) Input gate: Controls how much new
information is added to the LSTM's
memory state.

2) Forget gate: Determines how much
previous information is discarded.

3) Output gate: Regulates how much of
the cell memory is passed to the next
hidden state. The gates are mathematically
formulated as:

iy = G(WixXt + Wiphe—1 + Wicceq + bi)
fe=o0 (foXt + Wrphe—y + Weecr4
+ bf)

e =ft° C—1 ti;
° (p(M/cht + Wchht—l

+b,)
0 = O-(I/VoxXt + Wonhe—q + Wyeer + bO)

h, =
o ° @ (cp) ()

Where i, f, o, and ¢ denote the input gate,
forget gate, output gate, and cell state,
respectively. Each gate has the same
dimension as the hidden vector h (N x1).
Here o is a sigmoid function, and ¢ is a
nonlinear function mapping to the range [-
1, 1]. Wi, Wy, and W, are the peephole
connection matrices linking the cell state to
their respective gates, while Wix, Wi, Wox,
and W are input weight matrices
connecting the input vector X; (M x 1) to
the gates and cell state. Because of the
gates and the input vector X: have the
dimensions of N xI and M x 1
respectively. The matrices Win, Wic, Wi,
Wen, Won, Woe are all of dimensions N x N,
and Wix, Wx W and Wex are of
dimensions N x M.

4. RESULTS AND DISCUSSION
4.1 Data Description

The data used for this study was collected
from a real-world spectrum measurement
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in Addis Ababa, Ethiopia using the TCI
spectrum monitoring system in the
GSM900 MHz mobile network uplink
band spanning from 902.5 to 915 MHz for
five consecutive days from January 28th to
February 1st, 2021. The area of Bole was
selected for the measurement because it is
a commercial area that expects to have a
high spectrum demand [35]. The data set
comprised a total of 450,000 data points,
captured with a resolution bandwidth of
100 kHz with 4 minutes resolution time.
The GSM900 MHz uplink band was
selected for this study to deploy a CR due
to its underutilization from the sparse use
of its users communicating on the network
making it a promising potential candidate
for a CR deployment [36], [37].The dataset
contains features including Channel,
Frequency, Maximum occupancy (%),
Average occupancy (%), Maximum field
strength, and Average field strength.
However, all these features were not used
for modeling spectrum occupancy due to
their  inability to capture unique
information and their potential negative
impact on the model's generalization. To
address this issue, a feature reduction
technique was employed to reduce the
number of input variables, thus preventing
excessive model complexity  while
preserving its ability to generalize
effectively. In this study, a filter-based
feature selection approach was utilized,
which relies on statistical measures such as
information gain, to identify features that
contribute the most information about the
target variable which exclusively considers
the association between each feature and
the class label [38]. Following the feature
reduction process, the selected features for
predicting spectrum occupancy state
comprised frequency, average occupancy,
and average field strength.

The spectrum measurement campaign that
was conducted in the GSM900 MHz
mobile network uplink band at four
different regional cities in October 2021
has an average utilization of 21.45 % in
Adama, 16.21 % in Bahir Dar, 18.87 % in
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Hawassa, and 33.52 % in
Jigjiga.  Additionally, within Ethio-
telecom's mobile network uplink bands in
Addis Ababa, utilization was found to be
14.72 % in GSM 900MHz, 31.67 % in
UMTS 900MHz, 2532 % in LTE
1800MHz, and 6.75 % in LTE 2600MHz.
The analysis indicates the underutilization
of the spectrum. Even though all of the
spectrum  bands are  underutilized,
subscribers would migrate from 2G to 3G,
4G, and 5G to get the advanced technology
features and services from these new-
generation mobile networks because the
900MHz GSM offers only voice and short
message services (SMS) [39]. For this
reason, there is no need of considering 3G,
4G/LTE and 5G networks in our work.

The  spectrum  utilization  analysis
conducted in five days revealed distinct
values for weekdays (Thursday, Friday,
and Monday) and weekends (Saturday and
Sunday).  Specifically, the average
spectrum utilization on weekdays was
19.13 %, 19.03 %, and 21.14 %,
respectively. In contrast, the average
spectrum utilization on weekends exhibits
a variation, with values of 17.3 % on
Saturday and a higher utilization rate of
25.76 % on Sunday.

The CFD-based spectrum sensing method
was used in this study for defining PU
channel characterization and modeling
spectrum occupancy prediction due to its
enhanced performance in challenging SNR
conditions. In a five-day spectrum
measurement campaign conducted using
the CFD spectrum sensing method, the
average spectrum utilization for the GSM
900 MHz uplink band was 20.47 %.
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4.2 Results

This study utilizes data obtained via the
CFD-based spectrum sensing method to
develop the spectrum occupancy state
prediction model. The dataset encompasses
225,000 data points, representing half of
the five-day  measurement  dataset.
Subsequently, this dataset is divided into
training and validation sets, maintaining an
80 % to 20 % ratio, we should notice that
this is done to minimize the risk of
overstated generalizability. The spectrum
occupancy state prediction model was
implemented using Python programming
with the Keras library. The model's
configuration was evaluated based on
metrics such as the loss function and
accuracy (Figure 3). Throughout the
training process, various hyperparameter
combinations were explored to identify the
most effective model that has the lowest
loss and the highest accuracy. Finally, the
model architecture comprises three LSTM
layers with 128 units, followed by two
dropout layers with a dropout rate set at
0.1. Additionally, two dense layers with
128 and 64 units, were incorporated, along
with a final output layer. The model was
configured with an activation function of
rectified linear unit (ReLU) for all hidden
layers and sigmoid for the output layer,
adaptive moment estimation (ADAM) as
an optimizer, binary cross-entropy as a loss
function, 0.001 learning rate, 128 batch
size, and 400 Epochs. Three sets of
experiments designed to predict short-term
and long-term (ranging from three to five
hours) predictions conducted on the
proposed LSTM model have exhibited
consistent results across all performance
evaluation metrics with an accuracy of
99.45 %.
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Figure 3 Training and validation, loss and accuracy for the LSTM model for 5-hours ahead prediction
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Figure 4 Spectrum occupancy state prediction in LSTM for the 904.1MHZ channel
Figure 4 compares the spectrum occupancy for both short-term and long-term
state actual data, training, and testing prediction revealed that LSTM and Bi-
prediction performed for the 904.1MHZ LSTM achieved equal results, with an
channel. The LSTM network is trained to accuracy of 99.45 %. In contrast, the
adapt new spectrum occupancy states, as ConvLSTM model outperforms them,
shown in Figure 4, using the five-day achieving an accuracy of 99.72 %. Across
spectrum measurement data for a one- all three models, each term of prediction
channel 904.1MHz. In the graph, the has equal performance results. However,
brown dotted line representing the training the short-term prediction achieved its
data and the green dotted line representing targeted accuracy earlier than the long-term
the testing data closely match the actual 3-hour and 5-hour predictions. The 3-hour
observations depicted by the blue solid long-term prediction achieved its targeted
line. The test performance indicates an accuracy earlier than the 5-hour long-term

accuracy of 96 %. prediction.

A comparative analysis conducted on
LSTM, Bi-LSTM, and ConvLSTM models
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Figure 5 Comparison of models in Accuracy, Precision, and F1-Score
The Bi-LSTM model differs from the 4.3 Discussions
others by achieving its targeted accurac
y g g y Long-term spectrum occupancy state

earlier across all prediction scenarios. This
may be attributed to its ability to process

data in both forward and backward
directions, potentially improving its ability
to learn temporal
relationships.  Consequently, short-term

predictions tend to achieve better accuracy
earlier than long-term predictions. This
tendency may arise from factors such as
predicting the immediate future requires
fewer data points and simpler relationships,
and the available data for training the
model can be enough for short-term
prediction than for long-term prediction.
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prediction using the LSTM model to
implement a CR has improved spectrum
utilization and reduced sensing energy.

Improvement in Spectrum Utilization

Spectrum occupancy state prediction can
improve spectrum utilization by allowing
SUs to select and use idle PU channels
with appropriate time slots. This allows the
SUs to select spectrum channels efficiently
to reduce channel-switching costs and
increase network throughput. In a CRN the
PUs has two states, but the SU can sense
only one channel at a time. The CRN has
two types of SUs which are the CRsense
and the CRpredict. The CRsense randomly
selects a channel at every slot and senses
the states of the channels, while the
CRpredict device senses the states of the
channels after prediction among those
channels with an idle state. According to
[4] spectrum utilization (SU) in the CRN
can be defined as the ratio of the number of
idle slots discovered by the SUs to the total
number of idle slots available in the CRN.

Number of idle slots sensed (3)

SU =

" Total number of idle slots in the band
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The improvement in spectrum utilization
due to spectrum prediction can be
expressed as

SUsense— su

predict (4)

SUsense

SUimp(w) =

Where SUgense and SUpyeqice Tepresent the
spectrum utilization for the CRgense and the
CRyredict devices, respectively. Substituting
(3) in (4), SUimp( %) can be given by

Isense— Ipredict (5)

Isense

SUimp(%) =

Where Igense and  Lypeqice Tepresent the
number of idle channels sensed by the
CRsense and the number of idle channels
predicted by the  CRpreqice devices
respectively. This analysis can be
translated into a machine learning model
and becomes equal with the specificity that
measures the true negative rate, which is
the fraction of negative values that were
correctly predicted that can be calculated as
expressed in (6).

SUimp( o) = Specifcity = (6)

TN+FP

The SUimp (%) in a CRN also improves the
network throughput which shows the data
rate achieved in the network due to the
availability of more channels and can be
calculated as expressed in (7).

Throughput = SUjpmp(o)™® the number of
channels in the spectrum band (7)

Reduction in Sensing Energy

The spectrum occupancy state prediction
reduces the sensing energy required by the
SUs. This is because the SUs in a CRN can
sense only the idle channels. In a CRN the
CRgense device senses all the channels

Journal of EEA, Vol. 43, December 2025

whereas the CRpyeqic; device only senses
the channel that is predicted idle.

In other words, when the channel state is
predicted to be busy, the sensing operation
is not performed to reduce energy.
Considering that one unit of sensing energy
is required to sense one slot, the total
sensing energy required for a CRgepge
device in a finite duration of time can be
calculated as expressed in (8).

Toatal number
SEsense = of slots X
in the duration

(unit sensing ) (8)

energy

while the total sensing energy required by
the CRpyeqict device can be given by

SEpredict
= (SEsense - (Bpreidct))
* (Unit sensing energy) 9

Where Bjreigc: 18 the total number of busy
slots predicted by the CRy;eqic; device.

Therefore, using (8) and (9), the percentage
reduction in the sensing energy can be
given by

SEsense - SEpredict
S Esense

SEreacw) =

_ Bpredict
Total no.of idle slots

(10)

This can be translated to a machine
learning model that measures a value by
dividing the true positive value by the true
negative plus the false positive values,
even it doesn’t have an equivalent machine
learning metric it can be calculated and
expressed as shown in (11).
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It should be noted that Equation (11) is
derived from analytical formulations
reported in the literature. This study
extends these formulations by quantifying
sensing energy reduction using machine
learning metrics. The resulting expression
links the analytical energy model to
classification outcomes—true positives
(TP), true negatives (TN), and false
positives (FP). While conceptually similar
to standard ML metrics, it is not equivalent
to precision or recall. Accordingly, we

define this parameter as representing
the proportion of sensing energy saved
through accurate spectrum state prediction.

TP (11)

TN+FP
The suimp ( %), the network throughput, and
the sEred (%) across all models for all terms
of predictions calculated based on (6), (7),
and (11) are presented in Table 1.

SEred( %) —

Table 1 Quantified improvements achieved in the spectrum occupancy state prediction

Model Length of Prediction SUimp() Throughput SE,ca(u)

LSTM Short-Term 99.28 124.1 29.39
Long-Term (3 hrs.) 99.28 124.1*45 29.39
Long-Term (5 hrs.) 99.28 124.1*75 29.39

Bi- LSTM Short-Term 99.28 124.1 29.39
Long-Term (3 hrs.) 99.28 124.1*45 29.39
Long-Term (5 hrs.) 99.28 124.1*75 29.39

Conv-LSTM Short-Term 99.64 124.55 29.39
Long-Term (3 hrs.) 99.64 124.55*45 29.39
Long-Term (5 hrs.) 99.64 124.55*75 29.39

CONCLUSION AND FUTURE
WORK

This study addresses the challenges posed
by the rigidity of FSA policies. It paves the
way for more effective and efficient
spectrum utilization that optimizes scarce
spectrum resources by predicting the
spectrum occupancy state using a long-
term adaptive LSTM model and a
historical dataset obtained through a
reliable spectrum sensing method. The
proposed model has successfully predicted
the spectrum occupancy state for the
subsequent five hours with an accuracy of
99.45 % improved the spectrum utilization
from 20.47 % to 98.28 % and reduced the
sensing energy to 29.39 % compared to
real-time sensing. Future studies can focus
on enhancing the predictability of further
occupancy lengths up to days for

Journal of EEA, Vol. 43, December 2025

integrating CRN with the Internet of
Things, which creates a synergistic system
known as the (CRIoT). This integrated [oT
and CR approach amplifies smart cities’
capability, providing a comprehensive and
interconnected infrastructure for effective
and efficient urban management.
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