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ABSTRACT: In this paper we derive a Paley type inequality for subharmonic functions of order 

2
1

0, ≤< λλ and describe the asymptotic behaviour of the extremal functions near Pòlya peaks. We 

also give an alternative proof for the spread inequality using a non-asymptotic method via - a 
normal family of δ -subharmonic functions. 
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INTRODUCTION 
 

 Let u = 1 2u u−  be a subharmonic function in 

the complex plane, where 1 2,u u are subharmonic 
functions. We write 

 

N(r,u) =  
π2
1 θ

π
θ dreu i )(

2

0
∫  

B(r, u ) =  )(sup zu
rz =

. 

 
The Nevanlinna characteristic T(r, u) of u is 
defined by, 

 

T(r, u) = N(r, +u ) + N(r, 2u ) 
 

and the order  λ  of u by 
 

.
),(

),(logsuplim
urT

urT
r→∞

=λ  

 
If  λ  is finite, T(r, u) has sequence of Pòlya peaks 
{rn} of orderλ , i.e,  

 

T(r, u) ≤  (1+
n

∈  ) 
λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

nr
r T(r, u),      ( n∈ rn ≤ r≤

n

nr
∈

)  

 
for some sequence n∈  → 0 and nn r∈ → ∞  as n 

∞→ (for the proof see Edrei (1965)). 
 Let {rn} be a sequence of Pòlya peaks for T(r,u) 
of order λ , and set 
 

nβ =
2
1  m { ∈θ (- ππ , ]: u )θi

ne(r  > 0}, n = 1, 2, 3, 

……………………………………………………...(1) 

where m is  the Lebesgue measure on the real 
line. Put  
 

0β  = nβlim ,      0 πβ ≤≤ o  ……………………..(2) 
 
There is a subsequence {

knr } of {rn} such 
that 0ββ →

∉kn  as k ∞→ . Since a subsequence of 
{rn} is also a sequence of Pòlya peaks for T(r, u), 
we assume that  0ββ →n  as  n ∞→ . 
 Let β  be the smallest non-negative number 
such that  
 
cosλβ  = 1 - δ ,……………………………….…...(3) 
 

where δ  = ∞(δ ,u) = 1- ( )
),(

,suplim 2

urT
urN

r ∞→
,  called 

the Nevalinna deficiency of u. We note 

that
λ
πβ
2

≤ . 

 The Spread inequality asserts that 
0β { }βπ ,min≥ . It describes the size of the set for 

which a −δ subharmonic grows on rz =  as 
∞→r . It was conjectured by Edrei and proved 

by Baernstein (1973) and also by Rossi and 
Weitsman (1983), when  u = log )(zf , f a 
mermorphic function. Their proofs mainly 
depend on the star function and on the 
formulation of the theory of indicators 
introduced by Edrei (1970). In this paper we do 
not use the theory involving indicators instead 
we use a non-asymptotic method via normal 
family of δ -subharmonic functions to yield 
simpler proof for the spread relation. As we shall 
see the non-asymptotic approach provides a 
method to obtain sharp upper bound and to 
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describe the asymptotic behavior of certain class 
of subharmonic functions. 
 Let u be a subharmonic function of order 

2
10, ≤< λλ  and {rn} a sequence of Pòlya peaks of 

orderλ . 
 The main objective of the paper is to show that  
 

πλ
πλ

sin),(
),(lim ≤

∞→ urT
urrB

n

n
n

..………….………………..(4) 

 
for each r, ( ∞<< r0 ) and to describe the global 
asymptotic behavior of the extremal functions, 
i.e, functions for which equality holds in (4). 
Inequality (4) was proved by Rossi and 
Weitsman (1983) for the case u = log )(zf , f an 
entire function and r = 1. I refer to the inequality 
in (4) as Paley type inequality since Paley (1932) 
had conjectured the inequality 

 

)
2
10(,

sin),(
),(suplim ≤<≤

∞→
λ

πλ
πλ

urT
urB

r
 

 
The inequality was proved by Govorov (1969) for 
u = log )(zf , where f is an entire function.  
 The subharmonic function 

 

u ( =)θire
πλ

πλ λ

sin
r cos )(, πθλθ ≤ ………………....(5) 

 
is a typical example extremal to the Paley type 
inequality (4) showing that the inequality is 
sharp. 
 We will show that the extremal functions for 
the Paley type inequality behave asymptotically 
as rotations of the subharmonic function in (5). 
We use again a non-asymptotic method via a 
normal family of δ -subharmonic function to 
obtain the desired result. More over the functions 
extremal to the Paley inequality are also in some 
sense extremal (Theorem I’) to the well known 
inequality of the classical cosπρ theorem of 
Valiron (1914) and Wiman (1915), and to the 
inequality  proved by Ostrovskii (1963) and also 
by Edrei (1970). 
 
Statement of main result 

Theorem I: Let u be a sub harmonic function of 

order λ , 0 < λ ≤
2
1  and {rn } a sequence of 

Pòlya peaks of order  λ . Then 
 

a)
πλ

πλ λ

sin),(
),(lim r

urT
urrB

n

n
r

≤
∞→

 ,         (0 < r <∞ ) 

 

b) If equality holds in (a) for some r > 0, then it 
holds for all r > 0. In this case, we have 
 

i) ,
sin),(

),(lim
πλ

πλ λr
urT
urrB

n

n
n

=
∞→

        (0 < r <∞ ), 

 

ii) 
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),(lim

),(
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urT
urrNr

urT
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n

n
nn

n
n ∞→∞→

== λ ,  and 

 
iii) there is a subsequence I of the positive 

integers such that  

)(cos(
sin

)))11()( αθλ
πλ

λπλθ −+=
rienrru nT(ro(  

as ∞→n , ∈n I for almost all παθθ ≤−,  
and for some ],( ππα −∈ . 

 
Statement of the Spread inequality 
Theorem II: (The Spread inequality)  

If u is a δ - subharmonic function of order 
∞<< λλ 0, , then 

 

0β ≥  min {π , β }, 
 

 where 0β  and β  are given in (2) and (3) 

respectively. If 0
2
1

≤< λ  we have  0β  =π . 

 
Preliminaries 
1. The star-function. Let u = u1 - u2 be a δ -
subharmonic function in the complex plane. 
Following Baernstein (1973), we define the star - 
function of u by: 

u* )θi(re   =  sup ∫
E

reu(
2
1
π

iϕ )dϕ  + N(r,u2)...…..(6) 

where the supremum is taken over all 
measurable set E, with mE = 2θ . It is proved that  

 

),()(~1)( 2
0

* urNdreureu ii += ∫ ϕ
π

θ
ϕθ ……...…….(7) 

 
where reu (~→ϕ iϕ ) is the symmetric decreasing 
rearrangement of u (reiϕ ) on [-π ,π ]. Baernstein 
(1973) proved that u* is subharmonic in the upper 
half plane π + and continuous on the closure of 
π + except possibly at the origin, and that the 
supremum in (6) is attained in some set E ⊆  [-

ππ , ]. 
 From the definition of T ( r, u) we have 
 

T(r,u)  = reu (max *

θ
iθ ) (0 )πθ ≤≤ ……………….(8) 

 



SINET: Ethiop. J. Sci., 34(2), 2011                                                                                                                                           109 

 

)()),() r*
2

i*
1 uuN(r,  reuuN(r, == π ………….(9) 

 

0)(( * =
∂
∂

==
=

θ
θ

π θi

rz
reuu z)supu)B(r, , and 

 

πθ
θ

θ
π =

= ∂
∂

== )(( i

rz
reuu z)infu)A(r, ……………(10) 

 
We also need the following result due to 
Anderson and Baerstein (1978). Let u = u1 – u2  a 
be δ - subharmonic function in the plane of order 
0 ≤ ∞<λ , and {rn} a sequence of Pòlya peaks for 
T(r,u) of  order λ . Set  
 

un(z) = 
),(

)(
urT

zru

n

n  ,    n = 1,2,3…,  and 

=  )()(
1 zu n  - )()(

2 zu n  
 
where 

)()( zu n
i   = 

),(
)(

urT
zru

n

ni              ( i = 1,2 ) 

 Here we have T(r, nu ) = 
),(
),(

urT
urrT

n

n  and 

),(
),(),(

urT
urrBurB

n

n
n = . 

 
2. Anderson and Baerstein (1978) have proved 
that there is a δ - subharmonic function v = v1 - 
v2 and a subsequence I = {nk} of the positive 
integers such that the following statements hold 
as n→ ∞  in I 
 

a. =−∫
−

∞→
θ

π

π

θθ drevreu ii
nn

)()(lim
∞→n

lim N(r, vun −  ) 

= 0 ,    0< r <∞ ………………………….……..(11) 
b. ),(lim nn

urT
∞→

 = T(r, v) ≤   r λ ……………...…...(12) 

 

c. 
∞→n

lim N(r, )(
1

nu ) = N(r, v1)………………...……(13) 

 

d. 
∞→n

lim N(r, )(
2

nu ) = N(r, v2) ≤  (cosλβ  ) λr  , where 

β  as in (3)……………………….………………(14) 
 
Since T(1, un) = 1, it follows from (b) that T(1, v) = 
1. We refer to the δ - subharmonic function v as 
the limit function of u. We restate Theorem I in 
terms of the limit function v of u. 

 
Theorem I: Let u be a sub harmonic function of 

order λ , 0 <λ ≤
2
1   and {rn } a sequence of 

Pòlya peaks of order λ . If v is a limit function 
of u then 

 

i) B(r, v) ≤
λπ

πλ λ

sin
r ,    (0 < r < ∞ ). 

If equality holds in (a) of Theorem I for some r 
> 0, then for all r > 0, we have   

 

ii) B(r, v) =
λπ

πλ λ

sin
r  

 

iii) 
πλ
πλπλ λ

sin
cos),( rvrA =  

 

iv) N (r , v)  = λr  = T(r, v) , ( 0 < r <∞ ) 
 

v) =)( θirev παθαθλ
πλ

πλ λ
≤−− ),(cos

sin
r , for 

some  [ )ππα ,−∈  
 
Thus, if equality holds in the Paley type 
inequality for some r > 0, then the limit 
function v satisfies: 

 

πλ
πλ

sin),(
),(
=

vrT
vrB  , that is, v is extremal to Paley 

inequality, 
 

)
2
10(,

sin),(
),(suplim ≤<≤

∞→
λ

πλ
πλ

urT
urB

r
 

 

πλcos
),(
),(
=

vrB
vrA , that is, v is extremal to the 

inequality  
 

πλcos
),(
),(suplim ≥

∞→ urB
urA

r
 

 
due to Valiron (1914) and Wiman (1915), and  
 

πλ
πλπλ

sin
cos

),(
),(
=

vrT
vrA  

 
that is, v is extremal to the inequality 

 

πλ
πλπλ

sin
cos

),(
),(suplim ≥

∞→ urT
urA

r
 

 
due to Ostrovisklii and Edei (1963). 

To prove Theorem II we need 
Lemma 1: Let u = u1 – u2 be a δ  - subharmonic 
function of order λ > 0, {rn} a sequence Pòlya 
peaks for T(r,u) and I ={ nk} be a sequence of 
positive integers associated with v = v1- v2.. Then 
v*( 0ie β ) = 1. where 0β  is given by (2). 
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Proof Let An = {θ  : un ( θie ) > 0}, m(An) = 2β n by 
(1), and 

 α  = m
2
1 { [ ] 0)(:, >−∈ θππθ iev } 

 
We have, using (11), 
 

∫ −
nA

ii
n deveu θθθ ))()((  ≤ θθθ deveu

nA

ii
n∫ − )()(  ≤  

∫ −
π2

0

vun  dθ  0→ as n → ∞ ………………….(15) 

 
Since by (13) 
 
N(1, )(

2
nu ) →N(1,v2) as n→ ∞  and  

1 = ∫
nA

nu
π2
1 ( θie ) dθ  + N(1,u2n ) we conclude 

from (13) 
 

θ
π

θ
π

θθ devdeu
nn A

i

n

i

A
nn

)(
2
1lim)1)(

2
1lim ∫∫ ∞→∞→

=−= 2vN(1,   

 
But by (7) and the definition of T(r, v), we have  

 

1 = v* (eiα ) = θ
π

θ
α

dev i )(~1

0
∫  + N(1,v2). 

Hence 

θ
π

θ dev
nA

i

n
)(

2
1lim ∫∞→

 = ∫
α

π
0

1 θθ dev i )(~  

Since 
 

v* )ni(e β ≥  θ
π

θ dev
nA

i )(
2
1
∫  + N(1,v2) 

 
for each n, letting ∞→n , and by the continuity of 
v* , we have 
 

v*( 0βie )  ≥  v*(e αi ) = 1 
 
But by (8),  

 

v*(e 0βi ) ≤  T (1, v) = 1 
 

Thus v*(e 0βi ) = 1 
 We first give a proof of theorem II (The Spread 
inequality). Proof Theorem II we consider two 
cases: 

Case 1. πβ ≥ . Here we have 
2
1

≤λ , since 

2
πλβλπ ≤≤  (note that we always have

λ
πβ
2

≤ ). 

Thus if v is a limit function of u then by (12) and 
(13) we have v*(r) ≤  λr cosλβ ≤ λr cos λ π , v* 
(reiπ ) ≤  r λ  and, hence by Phragme'n Lindel o&& f 
principle 

 

v* )( θire ≤  r λ cos )( θπλ − ,  )0( πθ ≤≤ ……...(16) 
 

Thus, if 0β < π  , then using the above Lemma 
and applying the inequality in (16) with r = 1, 

0βθ =  we get (by lemma 1) 
 

1 = v* )0i(e β
≤  cos )( πβλ −o  , 

 
which is a contradiction  since in this case 

2
)(0 0

πβπλ ≤−< . Thus 0β ≥  π . Since 0β ≤ π , 

we conclude that πβ =o . Consequently 
 

≥0β   min { βπ , ) . 
 

Case 2. πβ < . Since v*(rei β ) ≤ T(r,v) λr≤  and  

v*(r)  = N(r,v2) ≤  λr cos λβ  by (12 ) and 12(d) , 
we have by Phragm e′n  Lindel o ′′ f principle 

 
v*(reiθ  ) )(cos βθλλ −≤ r , (0 βθ ≤≤ ) 

 
If ββ <0 , then, with r = 1, 0βθ =  and using 
Lemma 1 we get  
 

1 = v*(ei 0β ) ≤  cos )( 0 ββλ − , 
 

which is a contradiction. Hence ββ ≥0 ; 
and βπβ ,min{0 ≥ }. This completes the proof of 
theorem II. 
 
Proof of Theorem I. We need the following well 
known lemma due to Petrenko (1969) Lemma 2. 
Suppose u is subharmonic in the plane. Fix γ , 
0 1γ< ≤ , and let  

)1(

),( 1

1
2

+

=
−

γ

γγγ

t

ttk   

Then 

)
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0(),,2(

1

,
0

)(),(
R

ruRT
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r
c

t

dt

t

r
k

R iteuurB <<+∫≤ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ γ

γπγ   

 
for an absolute constant c. 
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 Proof of the above lemma are given by Essén 
(1975) and by Edrei and Fuchs (1976), lemma11.1) 
where it was shown that  
 

)10,
)sin(

),(),(ˆ

0
1 γπγ

πγγ <<== ∫
∞

+ s
st

dttksk s (  

 

 Proof of assertion (a). Since 0)(* =rv  and 
λπ rrev i ≤)(*  by Phragme’n Lindel o&& f principle, 

we have  
 

)0(,
sin
sin)(* πθ

πλ
λθλθ ≤≤≤ rrev i …….…………..(17) 

 
This implies   
 

πλ
λ

θ

λ
λ

θ
θ

sin
)(*

0
rrrev i =

∂
∂

=  

 
Thus by (8) 
 

)0(,
sin

),( ∞<<≤ rrvrB
πλ

πλ λ
,…………………..(18) 

 

Now fix r > 0 and put )() nire α
nn u u B(r, = , 

( ]ππα ,−∈n , n = 1, 2, 3... Assume on αα →  as 
∞→n . Then for s > r, we have 

 

B(r, un) θαθ
π

θ
π

π

dPseu n
s
r

i
n )()(

2
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−

  

 

where 
θ

θ
cos21

1)( 2

2

ss
sps

++
−

=  is the Poisson 

kernel. By (9) and since 
rs
rsP

s
r −

+
≤)(θ  we have, 

dominated convergence theorem,  
 

1limsup ( , ) ( ) ( ) ( , )
2

i
n r on

s

B r u v se P d B s v
π

θ

π

θ α θ
π→∞

−

≤ − ≤∫
 
where v  is the limit function of u. Since this 
holds for any s > r and B(s, v) is a continuous 
function of s, we have, letting s approach r and 
by (16) we get  
 

)0(,
sin

),(),(suplim ∞<<≤≤
→∞

rrvrBurB nn
       

πλ
πλ λ

.….(19) 

 
For 0<s<r, let ( ]ππα ,−∈ , such that 

v)B(s, v =)( αise . Then we have, 
 

θαθ
π

θαθ
π

θ
ππ

π

θ dPreudPrev
r
s

i
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r
s
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2
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2
1

2

0

−=−≤ ∫∫
−

 v)B(s,  

),(inflim)()(
2
1inflim

2

0
nn

r
s

i
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≤−= ∫ θαθ
π

θ
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Thus B(s, v) ),(inflim nn

urB
∞→

≤ . Letting s r→  we 

get 
 
B(r,v) ),(inflim nn

urB
∞→

≤ …………………………(20) 

 
From (19) and (20) we get  
 

πλ
πλ λ

sin
),(),(lim rvrBurB nn
≤=

∞→
……………..……(21) 

 
which proves assertion (a).  
 To prove assertion (b) we assume equality 
holds for r = 1r  > 0, i.e., 
 

πλ
πλλ

sin
),(lim 11 rurB nn
=

∞→
...............………………(22) 

 

Setting r = 1r  in (21) and together with (22) we get  
 

),( 1 vrB   = 
πλ

πλλ

sin
1

1r . 

 

We now apply Lemma 2 with )0(, πα
π
αγ <<=  

and (17) to the limit function v  to obtain 
 

 ),( 1 vrB   = 
1 sin
r λ πλ

πλ
 

πλ
πλγ

πλ
λαγ λλα

sin
),(

sin
sin),()( 1

1

0

1

0

* r
t
dt

t
rkt

t
dt

t
rktev i =≤≤ ∫∫

∞∞

 

 
Thus equality holds through out. Using (15), the 
continuity of *v , and basic fact in Lebesgue 
integral  we conclude that  
 

πλ
λαλα

sin
sin)(* ttev i =  

 
Hence by (17) and the maximum principle for 
subharmonic function, we have  
 

)0,0(,
sin
sin)(* ∞<<≤≤= rrrev i πθ

πλ
λθλθ ,……(23) 

 
 which implies by  (8) and (12) 
 

v)N(r,v)T(r, 0,r all for ==>= λλ

πλ
πλ rrvrB

sin
),(  

…………………………………………………….(24) 
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Thus from (21) it follows 

πλ
πλλ

sin
),(lim rurB nn
=

∞→
 

 
 for all r > 0, which proves assertion (i) of (b). 
Moreover assertion (ii) of (b) follows from (12), 
(13) and (24). 
 Proof of assertion (iii) of (b). Let v%  be the 
symmetric decreasing rearrangement of v , so 
that  
 

)0(,)(~1)(
0

* πθα
π

θ
αθ ≤≤= ∫ drevrev ii  

 
Thus using (23) we have  
 

)(,
sin
cos)(~ πθ

πλ
λθλπ λθ ≤= rrev i …………………(23) 

 
and v%  is harmonic in {z: -π < arg (z) <π }. A well 
known result of Essén and Shea (1978/79) shows 
that  
 

  ) zarg (    πα ≤= ),(~)( zvzev i ,  for some  
],( ππα −∈ ) 

 

Thus setting z = )( αθ −ire , where παθ ≤−  and 
using (21) we get 
 

( ) ),cos
sin

)( παθαθ
πλ

πλ λ
θ ≤−= -(  rrev i  

 
A standard result in the theory of integration and 
(9) shows that there is subsequence I  of positive 
integers such that 
 

)()1)1(()( θθ ii
n revoreu +=  

 
as ∞→n  (n∈ I ) for almost all ), παθθ ≤-(  . 
This completes the proof of Theorem I. 

 
 

CONCLUSION 
 

The study shows that the functions which are 
extremal for the Paley type inequality are 
completely characterized by the fact that they 
behave asymptotically as the function  

),cos
sin

)( πθλθ
πλ

πλ λ
θ ≤= ( rreu i  

and are in some way extremal to other 
inequalities arising in function theory. 
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