SINET: Ethiop. J. Sci., 34(2):107-112, 2011

© College of Natural Sciences, Addis Ababa University, 2011

ISSN: 0379-2897

APPLICATION OF NORMAL FAMILY TO THE SPREAD INEQUALITY
AND THE PALEY TYPE INEQUALITY

Seid Mohammed

Department of Mathematics, College of Natural Sciences, Addis Ababa University
PO Box1176, Addis Ababa, Ethiopia. E-mail: Seid_mt@yahoo.com

ABSTRACT: In this paper we derive a Paley type inequality for subharmonic functions of order

A0<2< %and describe the asymptotic behaviour of the extremal functions near Polya peaks. We

also give an alternative proof for the spread inequality using a non-asymptotic method via - a

normal family of ¢ -subharmonic functions.
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INTRODUCTION

Let u = U, —U, be a subharmonic function in

the complex plane, where U,, U, are subharmonic

functions. We write

2
N(r,u) = i J'u(reié’)da
0

B(r,u) = supu(z).

|z|=r

The Nevanlinna characteristic T(r, u) of u is
defined by,

T(r, u) = N(r,u" ) + N(r, u,)
and the order A of u by

logT (r,u)

A = limsup
T(r,u)

r—oo

If 2 is finite, T(r, u) has sequence of Polya peaks
{rn} of order 1, i.e,

r
(eprn<r< 1)
en

A
T(r,u) < (1+e, ) (LJ T(r, u),

n

for some sequence €, —>0and €, 1, > © asn

— oo (for the proof see Edrei (1965)).
Let {r,} be a sequence of Polya peaks for T(r,u)
of order A, and set

/S'n=% m{fe(- znx] u(rnei‘g) >0},n=1,23,
veeee(1)

where m is the Lebesgue measure on the real
line. Put

Bo = liMB,, 0SBy ST ceveeverrereeee e eenn(2)

There is a subsequence {r, } of {r} such

that £, — By as k—> . Since a subsequence of

{rn} is also a sequence of Polya peaks for T(r, u),
we assume that g, >f, as n—> .

Let S be the smallest non-negative number
such that

COSAL =1 -0 jeviieiiiiiiiniiiniinncriinnnesnesnnsennnn(3)

where 6 = (0 ,u) = 1- lim supw, called
row  T(r,u)

the Nevalinna deficiency of u. We note
7
that g <—.
d 22
The Spread inequality  asserts  that

Bo > min{z, B}. It describes the size of the set for
which a ¢ —subharmonic grows on |Z| =r as

r » . It was conjectured by Edrei and proved
by Baernstein (1973) and also by Rossi and
Weitsman (1983), when u = log |f(z), f a

mermorphic function. Their proofs mainly
depend on the star function and on the
formulation of the theory of indicators
introduced by Edrei (1970). In this paper we do
not use the theory involving indicators instead
we use a non-asymptotic method via normal
family of ¢ -subharmonic functions to yield
simpler proof for the spread relation. As we shall
see the non-asymptotic approach provides a
method to obtain sharp upper bound and to




108

Seid Mohammed

describe the asymptotic behavior of certain class
of subharmonic functions.
Let u be a subharmonic function of order

A0<4 S% and {r,} a sequence of Polya peaks of

order 4.
The main objective of the paper is to show that

B(rr,,u) < A
noo T(r,,u)  sinzd

for each r, (0<r <w) and to describe the global
asymptotic behavior of the extremal functions,
i.e, functions for which equality holds in (4).
Inequality (4) was proved by Rossi and
Weitsman (1983) for the case u = log|f (z)|, f an
entire function and r = 1. I refer to the inequality
in (4) as Paley type inequality since Paley (1932)
had conjectured the inequality

B(r,u) < A 1

limsu < ,(0<A<=
pT(r,u) sinzzﬂ( 2)

r—oo

The inequality was proved by Govorov (1969) for
u= 10g|f (2)

, where f is an entire function.

The subharmonic function

_ p)
u (1e'%) = 7 08 10,0 < 7) cervee e 5)
sin zA

is a typical example extremal to the Paley type
inequality (4) showing that the inequality is
sharp.

We will show that the extremal functions for
the Paley type inequality behave asymptotically
as rotations of the subharmonic function in (5).
We use again a non-asymptotic method via a
normal family of o -subharmonic function to
obtain the desired result. More over the functions
extremal to the Paley inequality are also in some
sense extremal (Theorem I’) to the well known
inequality of the classical cos7zp theorem of
Valiron (1914) and Wiman (1915), and to the
inequality proved by Ostrovskii (1963) and also
by Edrei (1970).

Statement of main result

Theorem I: Let u be a sub harmonic function of
order 4,0 < A< % and {r, } a sequence of
Polya peaks of order 4. Then

2
a) lim B(rr,,u) p 7_zﬂr ’
r-o T(r,,u) sinzA

(0O<r<w)

b) If equality holds in (a) for some r > 0, then it
holds for all r > 0. In this case, we have

B(rr,,u) _ zir?

i) lim - , (0O<r<w),
n—>o T(r,u) sinzi

i) lim T ) _a M’ and
n—w T(rn’u) n—w T(I’n,u)

iii) there is a subsequence I of the positive
integers such that

A

- cos(1(0 - a)

sin 74

as n— o ,nelforalmost all 49,|9—a|£7r

u(rie'®) = @+ o) () 22

and for some « € (-7, 7].

Statement of the Spread inequality

Theorem II: (The Spread inequality)
If uis a 6 - subharmonic function of order
A,0< A <o, then

ﬁO 2 min{ﬂ-/ﬂ}/
where S, and g are given in (2) and (3)

respectively. If 0< 4 S% wehave S, =x.

Preliminaries

1. The star-function. Let u = w1 - u2 be a J-
subharmonic function in the complex plane.
Following Baernstein (1973), we define the star -
function of u by:

u (re'?) = supiju(rew)d(p + N(r,u)........(6)
2r a

where the supremum is taken over all
measurable set E, with mE =26 It is proved that

0
u*(reig)=%_|.ﬁ(rei“’)d¢+ N(F,Up) e eveemene e @)
0

where ¢ — U(rei®) is the symmetric decreasing
rearrangement of u (re'?) on [- 7, 7 ]. Baernstein
(1973) proved that u* is subharmonic in the upper
half plane z* and continuous on the closure of
7w+ except possibly at the origin, and that the
supremum in (6) is attained in some set E < [-
.
From the definition of T ( r, u) we have

T(ru) = magu*(re 10Y(0<OLT) ceeveeaeveearenena(8)
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N(r,uy)=u’ (re'™), N, uy) =u (F) cererevenene 9)

B(r,u) =supu(z) = ﬂ%u*(rem)w =0, and

|z|=r

At u) = inf u(z) = ﬂ%u(reig)b:ﬂ eereers e nnn(10)

|2f=r

We also need the following result due to
Anderson and Baerstein (1978). Letu=u; - uz a
be ¢ - subharmonic function in the plane of order
0< A<, and {r,} a sequence of Polya peaks for
T(r,u) of order 4.Set

Un(z) = M , n=1,23..., and
T(ry,u)
= u{"(z) - u{”(z)
where
(n) _ Ui(r2) -_
ur(z) = —= =12
P =g m12)
Here we have T(r,u,) = Ty, u) and
T(ry,u)
B(rr,,u)
B(r,u,) =——"-—*~.
SR YA

2. Anderson and Baerstein (1978) have proved
that there is a J - subharmonic function v = vy -
v2 and a subsequence I = {n} of the positive
integers such that the following statements hold
asn—> o inl

A
a. lim J.un(rei‘g)—v(reie))dez lim N, [u, -] )
n—ow n— o
-
=0, 0<T <00 .iiiieirrivnniereiencssennerneneas(11)
b limT(ru,) =T V) < 1% e (12)
n—oo
c. M N UMY = N(T, V1) eerereerreeeereren e (13)
n—oo

d. lim N(r,u™)) = N(r, vy < (cos 48 ) r* , where

n—oo

J L T I (G ) S

Since T(1, un) = 1, it follows from (b) that T(1, v) =
1. We refer to the 6 - subharmonic function v as
the limit function of u. We restate Theorem I in
terms of the limit function v of u.

Theorem I: Let u be a sub harmonic function of

order 4, 0 <A S% and {r, } a sequence of

Polya peaks of order A.If v is a limit function
of u then

r’
) Br,v) < =,
Ay
If equality holds in (a) of Theorem I for some r

> (), then for all r > 0, we have

O<r< o).

zart
sin Az

ii) B(r, v) =

i) A(r,v) = zar® S5
sin A

iv) N(r,v) =r* =T(r,v),(0<r<w)

!
icosl(@—a),|6—a|£ﬁ, for
sin 74

v)v(re'?) =
some « € [-7,7)
Thus, if equality holds in the Paley type

inequality for some r > 0, then the limit
function v satisfies:

B(r,v) = _”’1 , that is, v is extremal to Paley
T(r,v) sinzd
inequality,
roe  T(r,u) sinzi 2
AlrY) coszA, that is, v is extremal to the
B(r,v)
inequality
lim supM > c0oS zA

r—oo s

due to Valiron (1914) and Wiman (1915), and

A(r,v) 0
T(r,v)

cos A
sin zA

that is, v is extremal to the inequality

A(r,u) S
T(r,u)

cos A
sin zA

lim sup

r—oo

due to Ostrovisklii and Edei (1963).
To prove Theorem II we need
Lemma 1: Let u = u; - u2 be a § - subharmonic
function of order 4> 0, {r,} a sequence Polya
peaks for T(r,u) and I ={ ns} be a sequence of
positive integers associated with v = vi- v2. Then

v'(e0) =1. where £, is given by (2).
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Proof Let An = {0 :un (') >0}, m(Ay) =2 . by
(1), and

m{@e[—;r,;r]:v(eig)>0}

N~

o =

We have, using (11),

u, (') -v(e')do <

[ -venag < |
Ay A

27

J‘|un —v| df >0asn > ©.eeerinnirennnnen...(15)
0
Since by (13)

N(1,u,") = N(1,v) as n— o0 and

1 =i‘|'un (ei9) d@ + N(L,u* ) we conclude
2 bt

from (13)

lim - [un(e”) do=1-N(1,v,) = lim L [ve)ao
n—o 27[ by n—o 27[ A

But by (7) and the definition of T(r, v), we have

j 7(e'%)do + N(1va).
0

1=v' (e@)=

N |+

Hence

. 1 io _ 1(1 S(all
Ilmz—jv(e )de-;j 7('%)do

n—oo 2T
0

Since

v(e?n) > ijv(eig)dG +N(1,v2)
2z

for each n, letting n — o, and by the continuity of
v*, we have
vi(e) > vie')=1

But by (8),

Thus v ) =1

We first give a proof of theorem II (The Spread
inequality). Proof Theorem II we consider two
cases:

Case 1. pB>r. Here we have /13%, since

AT < AP < % (note that we always have f§ < %).

Thus if v is a limit function of u then by (12) and
(13) we have v'(r) < r*cosif <r*cosi z, v*

(rei7) < r” and, hence by Phragme'n Lindel 0 f
principle

v (re') < r'cos A(r—6), (0<O<7)........(16)

Thus, if f;< z , then using the above Lemma
and applying the inequality in (16) with r = 1,
0 = 3, we get(by lemma 1)

1=v (eiﬂo) < cos (B, —7) ,

which is a contradiction since in this case

0<ﬂ(7r—ﬂo)£%. Thus B, > 7. Sincef, < x,

we conclude that f,=7 . Consequently
ﬂO = mln{ﬂ-’ﬂ) .

Case2. f<r.Since v¥(rei) <T(r,v) <r’ and
v¥(r) =N(r,vs) < I cos 4B by (12) and 12(d),
we have by Phragme'n Lindel 0" f principle

vi(relt ) <r* cosA(0-p), (0<6< )

If By<p, then, with r = 1, 6=4, and using
Lemma 1 we get

1=v*eifo) < cos A(fy - B),
PozPB;

and S, 2 min{z, f}. This completes the proof of
theorem IL

which is a contradiction. Hence

Proof of Theorem I. We need the following well
known lemma due to Petrenko (1969) Lemma 2.
Suppose u is subharmonic in the plane. Fix y,

0<y <1, and let
1
2.y
k) =LY
(7 +1)

Then
R o imy (r Yat [(r)r R
B(r,u) < Ju(te"™ )k —,7 |—+¢ —|" T@Ru),(0<r <—)
0 t )t R 2

for an absolute constant c.
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Proof of the above lemma are given by Essén
(1975) and by Edrei and Fuchs (1976), lemmall.1)
where it was shown that

T

sin(mys)

()= [t g = ,(0<s<%)
0

Proof of assertion (a). Since Vv (r)=0 and

v'(re'") <r* by Phragme'n Lindel8 f principle,

we have
v (rei?) < 2 SN A0 R CEUET Pp——— 17)
sin .
This implies
ov* o 2 A
—(re')| o =T
2o ¢ oo sin A
Thus by (8)

A
B(r,v) < 72
sin zA

(0<r <), ceeeenn(18)

Now fix r > 0 and put B(r,u,)=u,(re'""),
a, € (—ﬂ,ﬂ'], =1, 2, 3... Assume «, > a, as

n — o . Then for s > r, we have

B(r, u) < —— jun(se“’)Pr (0-a,)do
2 K -

S

1-s2

—_— is the Poisson
1+5s° +2scosd

where

Ps 9) =
S+r

kernel. By (9) and since P (¢) <—— we have,
S—r

dominated convergence theorem,

limsup B(r,u,) < Zi J. v(se”)P. (0—a,)dO < B(s,V)
n—o0 y/a g

-

where V is the limit function of u. Since this
holds for any s > r and B(s, v) is a continuous
function of s, we have, letting s approach r and
by (16) we get

I|m supB(r u,) < B(r, v)< o’

O<s<r, let O(E(—ﬂ',ﬂ'], such that

v (se'*) = B(s, v) . Then we have,

For

r

V4 2z
B(s,v)§iiv(reig)Pé(H—a)dH=Iimi.([un(re”’)PE(H—a)dH
27
= lim |nf—Iu (re"g)P (6-a)do < I|m inf B(r,u,)
0

n—ow
r

Thus B(s, v) < liminf B(r,u,). Letting s— I we

n—oo
get
B(r,v) < liminf B(r,u,) ceeeeeeerneennnee ...(20)
n—o0
From (19) and (20) we get
lim B ) = BOA) €7 (21)
n—>o sin 74

which proves assertion (a).
To prove assertion (b) we assume equality
holdsforr=1r, >0, ie.,

A
S

lim B(r,u,) = 1" e(22)
n—oo

Setting r =1, in (21) and together with (22) we get

A

B(r,v) = r*' )
(V) Y sinza

We now apply Lemma 2 with y = a O<a<mn)
z

and (17) to the limit function V to obtain

B(n,v) =r’ i
sin z4

n dt i TA
=) —=h —
t y)t Y singa

dt sin/iawﬂ
—<—t
7)t sin;r/lO

sjv*(te‘“)k(rt—l,
0
Thus equality holds through out. Using (15), the

continuity of V', and basic fact in Lebesgue
integral we conclude that

2 SinAa
sinzA

V(te'?) =t

Hence by (17) and the maximum principle for
subharmonic function, we have

V*(I’eig)=IJM,(OSHSE,O<Y<OO), ...... (23)
sinzA

which implies by (8) and (12)

B(r,v) = r’ pre forallr >0, T(r,v) = rt = N(z,v)
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Thus from (21) it follows
A

sin 7z

lim B(r,u,) =r"
n—oo

for all r > 0, which proves assertion (i) of (b).
Moreover assertion (ii) of (b) follows from (12),
(13) and (24).

Proof of assertion (iii) of (b). Let V be the
symmetric decreasing rearrangement of V, so
that

0
Vi (re'?) = ijV(re‘“)da, 0<o<x)
T
0

Thus using (23) we have

1020 (101 ) vovvvvve e (23)

V(re'?) = am* =22,
sin zA

and V is harmonic in {z: - 7 < arg (z) <7 }. A well
known result of Essén and Shea (1978/79) shows
that

V(ze'*)=V(z), (argz<z) , for some

ae(-n,7x)])

i(0-a)

Thus setting z =re , where |€—a| <7z and

using (21) we get

) A
v(rei?) = A
sinzA

cos(0—a), (0-a|<7)

A standard result in the theory of integration and
(9) shows that there is subsequence | of positive
integers such that

u,(re'?) = (o(1) +1)v(re'?)

as n—>ow (nel) for almost all 6, (|6’—a|£7r).

This completes the proof of Theorem I.

CONCLUSION

The study shows that the functions which are
extremal for the Paley type inequality are
completely characterized by the fact that they
behave asymptotically as the function

u(re'?) =

Ar’

2 —cos 20, (0| < 7)

sin z4

and are in some way extremal to other

inequalities arising in function theory.
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