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ABSTRACT: In this paper we present a non-singular transformation that can reduce a given 
quadratic function defined on nR  to another simpler quadratic function and study the impact of the 
transformation in relation to the problem of minimization of the function. In particular, we 
construct a non-singular transformation that can reduce a quadratic function whose level surfaces 
are ellipsoids to another quadratic function whose level surfaces are spherical while preserving the 
convexity/concavity property of the given function. The relation between a minimizing point of the 
given function and that of the new simpler function obtained under the transformation is also 
described. 
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INTRODUCTION 
 

Consider a quadratic function RR →nf :  given 
by  
 
 

 ( ) xbAxxxf TT −= ……………………………….(1) 
 

where A  is an nn×  real matrix and .nb R∈  
Without loss of generality we assume that A  
is symmetric. If this is not the case, then it 
can be converted to symmetric form by 
replacing A  by ( )1

2
TA A+  which does not 

change the value of ( )xf . 
 Quadratic functions occur very often as the 
objective functions of various practical optimiza-
tion problems. For example, objective functions 
in problems of minimization of energy, portfolio 
optimization, optimal engineering design, and 
least square problems are often quadratic func-
tions of certain variables (see, for example, 
Kirsch, 1981; Flaudos and Visweswaran, 1995). 
They also frequently appear as the objective 
functions of sub-problems of various nonlinear 
programming problems that employ methods 
such as sequential quadratic programming and 
trust-region methods (Sorensen, 1982; Eldersveld, 
1991; Nocedal and Wright, 1999). Various 
problems in Algebra, Functional Analysis, 
Analytic Geometry and Computational Mathe-
matics also involve quadratic forms of the type 

AxxT  (see, for instance, Murtha and Willard, 
1969; Taylor and Lay, 1980; Strang, 2006). It is 
clear, therefore, that quadratic functions have 
great importance, both from mathematical and 
application point of views.  
 There are several approaches that have been 
proposed for solutions of optimization problems 
that have quadratic objective functions (Frank 
and Wolfe, 1956; Beale, 1959; Lemeke, 1962; 
Goldstein, 1965; Cryer, 1971; Benveniste, 1979; 
Han et al., 1992). The main source of difficulties 
for solutions and differences in approaches is the 
type of definiteness of the matrix A which deter-
mines the type of convexity of the function. 
 Though strictly convex functions are also 
convex, in this paper, whenever we say that a 
quadratic function )(xf  is convex, we particularly 
mean that the involved matrix A  is positive 
semi-definite. The same should be understood 
also for a concave quadratic function. 
 From the viewpoint of solving a minimization 
problem on a given subset of n

R , the problem is 
relatively the easiest when the quadratic function 
is strictly convex and the most difficult when the 
quadratic function is indefinite (Simmons, 1975; 
Kough, 1979). A survey of solution methods for 
minimization of various types of problems with 
quadratic objective functions can be found on the 
paper of Flaudos and Visweswaran, 1995. The 
common feature in most of the solution methods 
is that they rely on iterative procedures. 
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 In most non optimization problems that 
involve a quadratic form (or quadratic function), 
it is usually advantageous to use a transforma-
tion that can reduce the quadratic form into a 
simpler form without altering an associated 
geometry of the problem. Principal axis 
transformation, Lagrange’s reduction, and 
Kroneker’s reduction are such useful transforma-
tions (Hohn, 1964). The most important of these 
transformations is probably diagonalization by 
means of an orthogonal transformation. It is well 
known that for every nn×  symmetric real 
matrix A , there exists orthogonal matrix U such 
that 
 
 

),,2,1( ndiagAUU T λλλ L= ……………………. (2) 
 
 

where nλλλ ,,, 21 L  are the eigenvalues of A , 
each of which are real numbers, and the 
matrix U  is formed by the normalized 
eigenvectors of A . That is, 

 
 

],,2,1[ nqqqU L= …………………...…….... (3) 
 
 

where its -j th column, jq , is the normalized 

eigenvector of A  corresponding to jλ . Thus, 
 
 

,jjj qAq λ=
 

1=j
T
j qq  for each j , and 

0=j
T
i qq  when ji ≠ .  

 
 

As a consequence, the transformation  
 

Uyx = , 
 
applied to the quadratic function 

xbAxxxf TT −=)(  gives  
 
 

UybyyF T
n

i
ii −=∑

=1

2)( λ ……………...………….(4) 

 
 

This provides a particularly simple form in many 
important problems and changes the orientation 
of reference axes without altering an associated 

level surface of )(xf . Here, by a level surface of 
f  we mean the set { | ( ) ,      } nx f x c c∈ = ∈R R  

 Unfortunately, however, this transformation 
provides no simplification for optimization prob-
lems that involve quadratic objective functions. 
This is because iterative solution procedures for 
optimization problems are more influenced by 
the geometry of the level surfaces of objective 
functions than by the orientation of the reference 
axes. For instance, if we consider the steepest 
descent method in the case of a minimization 
problem, it is well known that the method 
experiences a slow convergence when the level 
surfaces of )(xf  are ellipsoids due to zigzagging 
of the steepest descent direction whether the 
objective function is in the form of (1) or (4). 
Furthermore, as the ellipsoid level surfaces of the 
quadratic function become more elongated, the 
zigzagging becomes more pronounced, and the 
steepest descent performs more poorly (Nocedal 
and Wright, 1999). 
 However, if the level surfaces of f  are spheres 
in nR , then, just one step of the steepest descent 
procedure with exact line search provides the 
minimizing point of the function on nR  starting 
from any initial point (Nocedal and Wright, 
1999). The level surfaces of f can have this nice 
geometry (sphere) when the n  eigenvalues of A  
are all equal.  
 This simplicity with the solution procedure of 
minimization of a quadratic function whose level 
surfaces are spheres, has motivated the work in 
this paper. In particular, our aim is to construct a 
non-singular transformation that can reduce a 
quadratic function whose level surfaces are 
ellipsoids to another suitable quadratic function 
whose level surfaces are spheres. Furthermore, it 
is desirable to have an easy way of recovering a 
minimizing (or maximizing) point of the given 
quadratic function from that of the new simpler 
quadratic function that has been obtained under 
the transformation. This is also illustrated in this 
paper.  

 
 

METHODS AND NOTATIONS 
 

We consider that, in the general case, the matrix 
A  that defines a given quadratic function on nR  

has k  positive, r  negative, and m  zero eigenval-
ues (counting multiplicities) where nmrk =++  
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and, hence, rank ( A ) = nrk ≤+ . The method 
employed in this paper is analytic. In particular, 
for a quadratic function )(xf  given in (1), we 
construct a suitable non-singular linear transfor-
mation that reduces )(xf  to a simpler quadratic 
function whose all nonzero eigenvalues are 
absolutely equal (i.e., their absolute values are 
equal). In fact, we transform )(xf  to a new 
quadratic function )(yg  such that the associated 
eigenvalues of )(yg  are all 

 
 

1 (with multiplicity n ), if )(xf  is strictly 
convex; 

–1 (with multiplicity n ), if )(xf  is strictly 
concave; 

1 and 0 (with multiplicity mk   and   , 
respectively), if  )(xf  is convex; 

–1 and 0 (with multiplicity mr   and   , 
respectively), if )(xf  is strictly concave; 

1 and –1 (with multiplicity rk   and   , 
respectively), if rank ( A ) = n  and )(xf  is 
indefinite; 

1, –1 and 0 (with multiplicity mrk   and    , , 
respectively), if rank ( A ) < n  and )(xf  is 
indefinite.  

 
 

 In order to have significance in optimization, 
the transformation should preserve the convex-
ity/concavity property of )(xf  and the nature of 
its critical points. Thus, the design of our trans-
formation takes this into account. We will also 
show that a minimizing point of )(xf  can be 
easily recovered from that of the new simpler 
quadratic function. Indeed, our discussion will 
focus only on minimization problems as a maxi-
mization problem is equivalent to a minimization 
problem. 
 For this purpose, we will construct a non-
singular linear transformation using a product of 
two non-singular nn×  matrices formed from the 
eigenvectors and eigenvalues of A . This involves 
an orthogonal transformation followed by 
scaling. The orthogonal transformation that 
forms part of the desired transformation is the 
usual orthogonal transformation given by the 

nn×  orthogonal matrix U  stated in (3) above. 
However, as discussed above, this does not 
produce a change on the geometry of the level 
surfaces other than rotating the coordinate axes 

to result in separation of variables which is, of 
course, desirable in many applications. In optimi-
zation, however, this alone has no significant role 
since the geometry of the level surfaces that have 
key influence on solution procedures still re-
mains the same under the orthogonal transfor-
mation. 
 Therefore, in order to convert also the 
geometry of the level surfaces to a convenient 
form, we let the orthogonal transformation be 
accompanied by a suitable scaling that can shrink 
the elongation of ellipsoid level surfaces along 
the principal axes and convert them to the 
desired spherical surfaces. For this purpose, we 
use nn×  diagonal matrix S , which we call 
scaling matrix of )(xf , given by  
 
 

),,,( 2211 nnsssdiagS L= ,……………....……….(5) 
 

where, for each ,,...,2,1 nj = the th−j diagonal 
element jjs  is defined as follows: 

 
 

⎪
⎩

⎪
⎨

⎧

=

≠
=

,01

0,
||

1

j

j
jjjs

λ

λ
λ

  if         ,    

  if   
 

 
 where, nλλλ ,,, 21 L  are the eigenvalues of 

A . Note that SST =  and its inverse is 
obviously )/1,,/1,/1( 2211

1
nnsssdiagS    L=− . 

We will see that, the product of the two 
matrices,US , has the desired effect.  

 For convenience, we order the eigenvalues in 
such a way that all the positive terms appear 
first, followed by all the negative terms. 
Therefore, kλλλ ,,, 21 L represent the k  positive 
eigenvalues, rkkk +++ λλλ ,,, 21 L  represent the r  nega-
tive eigenvalues, and mrkrkrk ++++++ λλλ ,,, 21 L  
represent the m  zero eigenvalues of A . Of 
course, any one or two of mrk   or  ,,  can be zero, 
depending on the type of definiteness of the 
matrix A . 
 We will use the following notations for subsets 
of the index set },,2,1{ nL =I  :  
 

},,2,1{}0|{ ki i L P =>∈= λII  ,  
},,2,1{}0|{ rkkki i +++=<∈= L  N λII  , and 

},,2,1{}0|{ mrkrkrki i ++++++==∈= L  Z λII  . 
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Again, any one or two of PI  , NI   or ZI   can be 
empty depending upon whether A  has positive, 
negative or zero eigenvalues or not.  

 
 

RESULTS AND DISCUSSION 
 

Let   )(xf be the quadratic function given in (1). 
That is, RR →nf :   such that 
 
 

,)( xbAxxxf TT −=  
 

where A  is an nn×  symmetric real matrix 
and .nb R∈ We consider the nn×  orthogonal 
matrix U  defined in (3) and  the scaling 
matrix S  defined in (5). Throughout this 
paper, we use the linear transformation 

nnL RR →:  given by  
 
 

USyyL =)( , 
 
 
which will be expressed simply as .USyx =  
Since, the matrix US  is non-singular, 

,)( 11 TUSUS −− =  the transformation is bijective. 

Hence, for any nx R∈  there is a unique ny R∈  
such that 
 
 

USyyLx == )( , 
 
 

 and for any ny R∈  there is a unique nx R∈  such 
that 

 
 

xUSxLy T11 )( −− == . 
 
 

Theorem 1: Suppose the matrix A , given in the 
expression of ),(xf  has k  positive, r  negative, 
and m  zero eigenvalues. Then,   

 

n
T ISAUUS ~)( =  , 

 
where ),,1,1,1(~  00,0,      ,,11,1, LLL

termsmtermsrtermsk

n diagI
−−−

−−−= . 

That is, nI~  is nn×  diagonal matrix with all the 
first k  diagonal elements are 1, the next r  

diagonal elements are 1−  and the last m  
diagonal elements are 0. 

 
Proof: Since ),,,( 21 n

T diagAUU λλλ L=  and also 
S  is a diagonal matrix, the product 

SAUUS T )(  is an nn×  diagonal matrix. In 
particular,  

 
 

),,,()( 2211 nn
T ddddiagSAUUS L= ,  

 
 

where 2
jjjjj sd λ=  , for each 

.,2,1 nj L= ……………………………...… (6) 
 
 

Since, from the definition of S given in (5), 
||/1 jjjs λ=  if 0≠jλ and 1=jjs  

when 0=jλ , (6) becomes  
 
 

⎩
⎨
⎧

+++=∈−
=∈== },,2,1{,1

},,2,1{,1||/ rkkkj
kjd jjjj L

L
    if   

   if      
N
P

I
Iλλ

  
and, 0== jjjd λ , for 

each },,2,1{ nrkrkj L++++=∈   ZI  . 
Hence, we have  

 
 

( ) ),,1,1,1(  00,0,      ,,11,1, LLL
termsmtermsrtermsk

T diagSAUUS
−−−

−−−= . 

 
 

Thus, the theorem is proved. 
 Note that rank ( nI~ ) = rank( A ) since the 

number of nonzero diagonal elements of nI~  is 
equal to the number of nonzero eigenvalues of 
A . 

 
Corollary 2: a. If A  is positive definite, then  

 

n
T ISAUUS =)( , 

 

b. If A  is negative definite, then   

n
T ISAUUS −=)( , 

where nI  is the nn×  identity matrix.  
 

Proof: If A  is positive definite, then, in Theorem 
1, we get nI~ = nI , since 0>jλ  for all j =1,2, 

…,n, so that .   mrnk === 0,  Similarly, If 
A  is negative definite, then in Theorem 1, 
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we get nI~ = nI− , since 0<jλ  for all j =1,2, 

…,n. Hence, the proof is completed. 
 
Theorem 3: Consider the quadratic function 

xbAxxxf TT −=)( , defined in (1) above. If we use 
the non-singular transformation given by  

 
 

USyx = , ……………....………….…. (7) 
 
 

where U  and S  are as given in (2) and (5), 
respectively, then the quadratic function )(xf  
becomes   
 
 

ybyyybyIyyg T

i
i

i
i

T
n

T −−=−= ∑∑
∈∈  N P

    
II

22~)( , ….....(8) 

 
 

where ,USbb TT =  iy  is the thi -  component of 

y , and nI~  is as given in Theorem 1.  
 
Proof: Using the transformation (7) and Theorem 

1 we get  
 
 

)()( USyAUSyAxx TT =  

= yAUSSUy TT )(  

= yIy n
T ~

 
= ∑∑

∈∈

−
 N P II i

i
i

i yy 22  …............................(9) 

 
 

Moreover, since (7) implies USybxb TT = , setting  
 
 

USbb TT = , …....................................(10) 
 
 

we get ybxb TT = . This, together with (9), gives 
us 
 

ybyyybyIyxbAxx T

i
i

i
i

T
n

TTT −−=−=− ∑∑
∈∈  N P

    
II

22~  

 
Hence, the theorem is proved.  
Noting that 
 
 

},,2,1{}0|{ ki i L P =>∈= λII   ,   and 
},,2,1{}0|{ rkkki i +++=<∈= L  N λII  , 

we may express the new quadratic function 
)(yg  in (8) as  

 

ybyyyg T
r

i
ik

k

i
i −−= ∑∑

=
+

= 1

2

1

2)(   

 
 

Corollary 4: If the transformation of variables 
given by (7) is applied to the quadratic function 

xbAxxxf TT −=)( , then )(xf  becomes 

a. ybyybyIyyg T
n

i
i

T
n

T −=−= ∑
=1

2)(   , if A  is 

positive definite, 

b. ybyybyIyyg T
n

i
i

T
n

T −−=−−= ∑
=1

2)(  , if A  is 

negative definite, 
 
where  ,USbb TT =  and iy  is the thi -  component 
of y . 
 The proof of Corollary 4 follows directly from 
Theorem 3 and Corollary 2. Note that, for the 
functions )(yg  given in Corollary 4(a) and (b), 
the level surfaces are spherical while the level 
surfaces of a strictly convex (or concave) function 

)(xf  are, in general, ellipsoids. Thus, the results 
in Corollary 4 show that the transformation 
converts ellipsoid level surfaces of a quadratic 
function to spherical level surfaces. The next 
theorem shows another useful property of the 
transformation: the transformation preserves the 
convexity property of a quadratic function. 
 
Theorem 5: Consider a quadratic function )(xf  
defined by (1) and the transformation 

  USyx = that transforms )(xf  to )(yg  as stated 
in Theorem 3. Then, the following hold: 
 

a. If )(xf  is strictly convex, then )(yg is 
strictly convex, too. 

b. If )(xf  is convex, then )(yg is convex, 
too.  

 
Proof: (a). If )(xf  is strictly convex, i.e., A  is 

positive definite, then by Corollary 4 (a)  
 
 

ybyyg T
n

i
i −=∑

=1

2)( , 
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which is obviously strictly convex, where 
b is as in (10). 

 
(b). Suppose )(xf  is convex, i.e., A  is 
positive semi-definite. In this 
case, PI  ={1,2,…,k},  =NI  ∅ (so, r 
=0), ZI  ={k+1, k+2,…,k+ m} ≠ ∅, and k + 
m = n.  Hence, from (8) we get 

 
 

ybyybyIyyg T
k

i
i

T
n

T −=−= ∑
=1

2~)(     
 

 
 

which is convex  since, in this case, rank 

( nI~ ) = k <  n. 
Thus, the theorem is proved. 
 
 Analogously, the transformation preserves 
concavity property of )(xf . Furthermore, with 
similar argument, we can conclude that if )(xf  is 
indefinite so is )(yg . Now the question is: what if 
we minimize the simpler function  )(yg instead 
of the given function )(xf ? In the next theorem, 
we show that a minimizing point of )(xf  can be 
easily recovered from that of )(yg . Indeed, we 
next show that if *y  is a minimizing point 
of )(yg , then   ** USyx = is a minimizing point of 

)(xf . 
 
Theorem 6: Consider the quadratic function 

xbAxxxf TT −=)(  and the transformation 
USyx =  that converts )(xf  to )(yg  as stated in 

Theorem 3. Then we have the followings:  
 
a. ( ) ( )g y f x=  for every nxy R∈,  such 

that yUSx = . 
b. Given n

xM R⊆ , suppose  

{ }| ,n n
yM y x USy x= ∈ = ∈R R . Then,  

  yMy ∈* is a minimizer of )(yg  on yM  if 

and only if   ** USyx =  is a minimizer of )(xf  
on xM . 
 

Proof: (a) For any nxy R∈,  such that yUSx = , 
we have  

 
 

( ) ( ) ( )T T T T Tf x x Ax b x y SU AUS y b USy g y= − = − = . 
 

Thus, (a) is true. 
 

(b) Since the transformation is non-
singular (bijective) on nR  and by the 
definition of yM , for every nyx R∈,  

such that yUSx = , it holds that   xMx∈  
if and only if yMy∈ .  

 
 Now suppose   yMy ∈* is a minimizer of )(yg  

on yM  and   ** USyx = . Then,  
 
 

  )(*)( ygyg ≤ for all yMy∈ ….......................... (11) 
 
 

Next take arbitrary    xMx∈ such that *xx ≠   (If 
there is no such x , then x* is obviously the 
minimizer of f on xM ). Since the transformation 
is bijective, there is yMy∈  such that yUSx =  

and *yy ≠ . Now using Theorem 6(a) and (11) 
we have:  
 
 

)()(*)(*)( xfygygxf =≤= . 
 
 

Thus, since   xMx∈ is arbitrary,  )(*)( xfxf ≤  for 
all xMx∈ . That is,   ** USyx = is a minimizer of 

)(xf  on xM .  
 Conversely, suppose   xMx ∈* is a minimizer 
of )(xf  on xM . That is, 
 
 

  )(*)( xfxf ≤ for all xMx∈ ….........................(12) 
 
 

We want to show that   *y is a minimizer of )(yg  

on yM  where   ** 1 xUSy T−= ; i.e., ** USyx = . To 
show this, with the same argument as for the 
case above, take arbitrary   yMy∈ such that 

*yy ≠ . Then, there is xMx∈  such that yUSx = . 
Hence, using again Theorem 6 (a) and (12) we get  
 
 

)()(*)(*)( ygxfxfyg =≤= . 
 

Therefore, since   yMy∈ is arbitrary, we 

conclude that )(*)( ygyg ≤  for all yMy∈ . That 
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is,  *y is a minimizer of )(yg  on yM  

where  .** USyx =  This completes the proof of 
also part (b) of the theorem. Therefore, the 
theorem is proved.   
 
Corollary 7 Consider the quadratic function 

xbAxxxf TT −=)(  and the transformation  
USyx =  that converts )(xf  to )(yg  as stated in 

Theorem 3. Then, *y  ∈ nR  is a minimizing 

point of )(yg  on nR  if and only if   ** USyx = is a 

minimizing point of )(xf  on nR . 
 Note that Corollary 7 follows directly from 
Theorem 6, since, in Theorem 6 (b), n

xM R=  if 

and only if n
yM R= . 

 
 

CONCLUSION 
 

In this paper, we presented a non-singular linear 
transformation that can convert a quadratic 
function whose level surfaces are ellipsoids to a 
simpler quadratic function whose level surfaces 
are spherical. In particular, the transformation 
reduces any strictly convex quadratic function to 
another strictly convex, but simpler, quadratic 
function whose associated eigenvalues are all 1. 
Similarly, the transformation reduces any strictly 
concave quadratic function to another strictly 
concave quadratic function whose associated 
eigenvalues are all 1− . It is also demonstrated 
that an extremum point of the given quadratic 
function can be easily recovered from that of the 
new simpler function obtained under the 
transformation. We hope that this approach is 
useful since it is significantly easier to find a 
minimizing point of a strictly convex function (or 
a maximizing point of a strictly concave function) 
using, say, the steepest descent (or ascent) 
method when all associated eigenvalues of the 
quadratic function are equal. It will be our next 
task to study the practical impact of this 
approach on quadratic programming problems 
as well as on the solution procedures of other 
general nonlinear programming problems. 
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