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ABSTRACT: The paper models the growth in arm circumference of 450 infants during their first year 
of life. The model is based on longitudinal data obtained from Jimma, a town in southeast Ethiopia. A 
linear mixed model was employed to see how arm circumference of these infants change over their first 
year of life. A polynomial model with third degree term is found to be significant. The Loess smoothing 
technique is applied to check whether our model fit the data set well. The fitted arm circumference is 
very close to the smoothed curves. Three dropout models are fitted and compared using the likelihood 
ratio statistic. The results favour the Missing at Random (MAR) process. This makes the likelihood-based 
analysis justifiable. Our final model is dominated by the linear term early in life, with contribution of 
the quadratic and cubic terms as the child ages a few months. This indicates that arm circumference 
growth stops for several months, and possibly there are losses in arm circumferences. This 
phenomenon can be attributed to malnutrition. 
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INTRODUCTION 
 
A longitudinal community based study which 
focused on infant survival was done in the Jimma, 
Illubabor and Keffecho Administrative zones in 
southwest Ethiopia in 1992–1994. With the aim of 
identifying all live births, all traditional birth 
attendants in the above areas were involved in the 
fieldwork. Traditional birth attendants are women 
residents in the area who serve and assist women 
during pregnancy and delivery. They have easy 
access to women in the fertile age group, and were 
able to assess the status of pregnancy. Each 
traditional birth attendant was given responsibility 
to attend about 300 households, and went house to 
house regularly to locate pregnant women who 
were in their second trimester. The traditional birth 
attendants reported daily in person to the 
enumerator responsible for her Kebele (a 
subtown). For each one of the three Kebeles one 
enumerator was assigned. The enumerator 
monitored the expectant mother so as to reach her 
on time soon after delivery. For each of three or 
more enumerators one supervisor (mainly nurses) 
was assigned who checked and supported data 
collection (Lesaffre et al., 1999). 
 In each Kebele all one-year live-birth cohorts 
were recruited for the study and followed for one 
year from 1992 to 1994. Soon after birth data on 
infant anthropometrics and mothers’ socio-
economic variables were collected. Then regular 
follow-up about the infants was made bimonthly 

until their first birthday or to an earlier death. 
Seven visits were made during the data collection 
process. The data considered in this study refer 
only to 450 randomly selected infants. 
 The growth in arm circumference is our subject 
of interest in this study because it can be used to 
measure the status of a child’s nutrition. Arm 
circumference could help us to know the thickness 
of the arms of a healthy child through which the 
nutrition status can be approximated. Measure-
ment of arm circumference can easily be done by 
putting a tape measure around a child’s upper 
arm. A healthy child will have thick arms and a 
large arm circumference. A thin malnourished 
child will have thin arms and a small arm 
circumference. Healthy arm circumference for age 
line starts at 10.5 cm, which is the arm 
circumference of a healthy child at birth. The age 
line rises steeply from birth on and by the time a 
child is one year old, the arm circumference is 
nearly 16 cm (King et al., 1973). In other words, a 
child’s arm gets much thicker during the first year 
of life. During the next four years of a child’s life 
that is from the time the child is one up to five 
years of age, the graph of the age line is nearly flat. 
A child’s arm circumference, therefore, only grows 
by a little over one centimetre from the time it is 
one until the time it is five. 
 As mentioned in King et al. (1973), a child is 
considered as malnourished if its arm circum-
ference is below 14 cm at birth. This marks the 
difference between healthy and malnourished 
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children. From the above ideas one can conclude 
that arm circumference is one important measure 
in monitoring normal child growth. The objective 
of this paper is then to model the growth in arm 
circumference of infants in Jimma town. 
 
 

MATERIALS AND METHODS 
 
Data sources, description and models 
The data are obtained from Jimma Infant Survival 
Project done from 1992–1994. The arm circum-
ference of infants as well as other anthropometrics 
measurements were measured for all infants at 
approximately 0, 2, 4, 6, 8, 10 and 12 months of age; 
zero stands for time of birth. The minimum and 
maximum number of visits per infant is 1 and 7, 
respectively. The data considered in this paper are 
based on 450 randomly selected subjects, which 
comprise 2794 observations. The response variable 
used is arm circumference. The covariates consid-
ered in the paper are age of mother at first visit, 
size of the household, marital status of mothers, 
educational level of mothers, number of antenatal 
visits, month of birth and sex of child. 
 Our data consisted of repeated measurements of 
the same subjects over time. It is then natural to 
find a methodology that will apply for the type of 
data at hand. The modelling methods that work for 
such data are mixed-effects models. 
 Mixed effects models provide a powerful and 
flexible tool for analyzing grouped data, that is, 
data that can be classified according to one or more 
grouping variables. Such models typically describe 
relationships between a response variable and 
some covariates in data grouped according to one 
or more classification factors. One of the areas of 
application for mixed models is in longitudinal 
data, and as our data are longitudinal type, these 
methods fulfil our need. 
 Since change in arm circumference, which is a 
continuous response variable, is the main object of 
the study, it is of interest first to study mean effect 
of time alone on the arm circumference. To achieve 
our objective we used a linear mixed model. 
 In a linear mixed model, the repeated meas-
urements are modelled using a linear regression 
model, with parameters that are allowed to vary 
over individuals, and which are therefore called 
random effects or subject-specific regression 
coefficients. Their mean reflects the average 
evolution in the population, and therefore they are 
called the vector of fixed effects (Verbeke and 
Molenberghs, 1997). 
 

Selection of a preliminary mean structure 
 The plot of individual growth curve in Figure 1 
and the Loess smoothed curve in Figure 2 suggest 
that a polynomial of degree two seems adequate to 
explain the arm circumference as a function of age. 
These preliminary informal analyses also indicate 
that the intercept and slope are different for 
different infants. Therefore, having a different 
slope for each infant leads to subject specific 
regression coefficients, which represent the 
random effect in our linear mixed model. Our 
provisional model for arm circumference with time 
(age in months) as explanatory variable is: 
 
 

jijiijiiiji ttY εβββ +++= 2
210

                   (1) 

 i=1,  …, 450;   j=1, …, ni 

 

 where  
  is age of child i at the jth measurement 

jit
  is arm circumference of child i measured at age t  

jiY ji

  represents the mean arm circumference of 
child i at birth 
i0β

 i1β  is the linear time effect on child i 
 

i2β  is the quadratic time effect on child i 
 jiε  is the mean zero deviation representing the 

within-infant variability 
  is the number of measurements on child i in
 
We assume that β0, β1, and β2 are the average 
intercept, linear and quadratic time effect of the 
population. After correcting for the effect of 
individual characteristics the individual coeffi-
cients can then be expressed as: 
 
 β0i = β0 + b0i,  β1i = β1 + b1i,    β2 = β2 + b2i 

 
 The error terms b0i, b1i and b2i represent the 
random effect on child i corresponding to the 
intercept, the linear and quadratic time effects, 
respectively. The parameters β0, β1 and β2 are 
assumed to be the same for all infants. Therefore, 
model (1) can be rewritten as follows: 
 

jijiijiiiji tbtbbY εβββ ++++++= 2
221100 )()()(                (2) 

 
or equivalently as 
 
  

ijijijiiiijijji tbtbbttY εβββ ++++++= 2
210

2
210

 
The matrix form of (2)  is 
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 iiiii ZZY εβ ++= b                  (3) 
 
where 
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β = (β0, β1, β2)΄  bi = (b0i, b1i, b2i)΄ 
 
 Model (3) is a linear mixed model with fixed 
effects β  and  random effect bi.  
 To make inferences we need to make 
assumptions about the probability distribution of 
these random components. The assumptions are: 
 

1. The vector of random effects bi is normally 
distributed with mean vector 0 and a 3 x 3 
covariance matrix D.  That is, bi ∼ N (0, D),  

where  0 = (0, 0, 0)΄ and  D  =  . 

















333231

232221

131211

ddd
ddd
ddd

 

2. The vector of residual component iε is 
normally distributed with mean vector 0 and  
(ni X  ni ) covariance matrix Σi. 

 
3. Between-infant measurements are assumed 

uncorrelated. That means b1 b2 … b450 ε1 ε2   ε450 
are assumed to be independent. 

 
Therefore, the marginal distribution of the vector 

of responses Yi  is normally distributed with mean 
vector Ziβ and covariance matrix V . 

That is Y
iiii ZDZ Σ+′=

i ∼ N ( )Σ+′iii ZDZZ ,β             (4) 
 
 

RESULTS AND DISCUSSION 
 
Exploratory data analysis 
Our data set consists of a number of observations 
on many subjects with some explanatory variables 
and missing values. Primarily we tried to get the 
overall features of the data using exploratory data 
analysis. The exploratory phases are useful to 
select an appropriate statistical model. 

Exploring the mean structure 
 To visualize the pattern of the data, plots of arm 
circumference against time were constructed. In 
Figure 1 observations for 30 randomly selected 
subjects were joined to investigate how arm 
circumference changes over time. It is noticeable 
from the plots that arm circumference is not 
constant as time evolves. Furthermore evidence of 
variability between and within individuals is 
observed. Infants also do not maintain their 
relative size of arm circumference over time. 
Incomplete profiles correspond to either dropouts 
or death. 
 

 
Fig. 1. Profile plot of arm circumference against time for 30 

randomly selected infants. 
 
 
 By looking at the profile plot (Figure 1), it is 
difficult to guess the most appropriate functional 
form of dependence of the mean arm 
circumference on time. We use the scatter-plot-
smoother to show the functional dependence 
without imposing parametric assumptions about 
the dependence. This non-parametric curve is 
displayed in Figure 2. The curve is obtained using 
the Loess method in S-PLUS software. 

 
Fig. 2. Loess smooth curve of arm circumference against 

time. 



                                                                                                                                                                Sileshi Fanta 4

 Figure 2 shows a sharp increase of the estimated 
mean response profile of arm circumference from 
the beginning up to the age of about four months, 
and thereafter the increase slows down. This curve 
suggests that the true statistical relationship 
between arm circumference and age is curvilinear. 
The pattern suggests that it might be reasonable to 
approximate the relationship by a quadratic 
function of time. 
 
Exploring the covariance structure 
 The inferential focus of this study is on the mean 
response of arm circumference. The covariance 
structure is of secondary interest, but must be 
accommodated in the analysis of the data to ensure 
valid inferences about the structure of mean arm 
circumference. 
 In this type of longitudinal study there are at 
least three possible components of variability, 
namely random effects, serial correlation and 
measurement error (Diggle et al., 1994). Random 
effects are effects that arise from the characteristic 
of individual infants. Therefore, these effects 
explain the stochastic variation between infants. 
On the other hand, measurements of arm 
circumference on successive occasions of the same 
infant are most likely to be serially dependent. 
Hence, we cannot extract as much information 
from these dependent observations as we could 
extract from the same number of independent 
measurements. That is, serial correlations mask 
part of the within-infant variation in the data. 
Finally, because arm circumferences are 
determined using a measuring tape during data 
collection, it is natural to expect the existence of 
measurement error. Therefore, in our further 
analysis we will look for these three sources of 
variability. 
 Since in covariance structure models all the 
variability in the data cannot be explained by 
explanatory variables (risk factors), we start to 
explore the covariance structure by first removing 
all systematic trends (Verbeke and Molenberghs, 
1997). Hence, residuals are obtained after 
regressing arm circumference on potential 
covariates and their interaction with time and time 
squared (PROC GLM procedure in SAS). 
 Figure 3 displays the estimated average 
evolution of the variance of the data at each time 
point. From the plot we can see that the variance is 
not constant. It shows an increasing tendency up to 
about the age of six months, and a slow decrease 
after the age of six months. 
 To gain insight into the nature of the association 
among repeated measurements of arm circumfer-

ence within subjects, we considered the scatter plot 
matrix of the residuals as shown in Figure 4. The 
scatter plot is made by discretizing time points by 
visit number (every other month). The upper panel 
of this Figure gives the correlation matrix of 
residuals for visits 1 to 7. In general, it shows that 
there is a decreasing tendency of correlation as the 
observations are separated further apart in time. 
On the other hand the scatter plots have a circular 
shape indicating that serial correlation is not very 
strong.  
 

Fig. 3. Plot of the variance of residuals against time  
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Fig. 4. Scatter plot and correlation matrices of residuals by 

visit number. 
 
 
Parameter estimates and adequacy of the model 
Parameter estimates 
 This section deals with selection of random 
effect, selection of covariance structure and 
estimation and inference about the dependence of 
arm circumference over time. The confirmatory 
statistical hypothesis test procedures are used. 
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Selection of the random effect 
 Our objective in this section is to decide whether 
or not to include the three random effects (random 
intercept, linear random slope, quadratic random 
slope) in the model. For the present we use the 
most elaborated model we are prepared to 
contemplate for the mean arm circumference. At 
the beginning we fitted a linear mixed model 
assuming the diagonal elements in the covariance 
matrix Σi are all equal and the off-diagonal 
elements are zero. Therefore, the variance of the 
response vector Yi depends on time, only through 
the component . ii ZDZ ′
 We followed a hierarchical test procedure to see 
if the quadratic random time effect is significant. If 
significance is confirmed then linear random time 
effect and random intercept will also be included. 
Hence our tests begin with the inquiry whether or 
not the quadratic time effects differ between 
infants. The formulation of the test of hypothesis at 
a specified α–level of significance is: 
 

H0: d13 = d23 =d33 = 0 against the alternative Ha: 
at least one of the di3 is different from 0, i=1,2,3. 

 
 In the above d13, d23, d33 are: the covariance of the 
random intercept and quadratic random slope, the 
covariance of the linear random slope and 
quadratic random slope, and the variance of the 
quadratic random slope, respectively. 
 The likelihood ratio test cannot be used for 
testing this null hypothesis because the likelihood 
ratio test suffers from a boundary problem under 
the null hypothesis d33 = 0. Ignoring the boundary 
problems may result in too parsimonious 
covariance structures. This correction due to the 
boundary problem reduces the p-values in order to 
protect against the use of oversimplified 
covariance structures (Verbeke and Molenberghs, 
2000). To avoid this boundary value problem we 
applied the asymptotic mixture of chi-squared 
distributions for the likelihood ratio test statistic. 
This statistic is the difference of minus twice the 
logarithm of the likelihoods under the null and the 
alternative hypothesis. A large value of this 
difference rejects the null hypothesis in favour of 
the alternative hypothesis that there is a significant 
improvement in the fit when the extra random 
effect parameters are included. The following four 
random effect models were considered for testing. 
 
 Model 1: Intercept, linear in time, time squared; 
 Model 2: Intercept, linear in time; 
 Model 3: Intercept only; 
 Model 4: Without any random effect. 
 

 The likelihood ratio test statistics based on 
maximum likelihood (ML) and restricted maximum 
likelihood (REML), together with the corresponding 
p-values are displayed in Table 1. From the results 
we can see that all observed values of the test 
statistics are very large, yielding p-values less than 
0.0001. We conclude that the covariance structure 
should not be simplified by deleting the quadratic 
random effects from the model. 
 Although this analysis is performed by including 
all potential covariates and their interaction with 
time and time squared in the mean structure of the 
model, the same result was obtained by using only 
time as covariate. In both cases, the covariance 
structure cannot be simplified any further by 
deleting the quadratic random effect from the 
model. 
 
Table 1. Likelihood ratio test for random effects using 

maximum as well as restricted maximum likeli-
hood estimation. (All potential risk factors were in-
cluded in the model). 

-2 loglikelihood LR-test 
Statistics 

 
P-value 

Random 
Effects 

ML REML ML REML 

Chi-
Square
χk1 : k2 ML REML

Model 1 8133.9 8332.2 - - -
Model 2 8257.0 8456.3 123.1 124.1 χ2 : 3 < 0.0001 < 0.0001

Model 3 8500.4 8704.0 243.4 247.7 χ1 : 2 < 0.0001 < 0.0001

Model 4 9549.7 9753.7 1049.3 1049.7 χ0 : 1 < 0.0001 < 0.0001

 
The P-value is calculated by giving equal weights for mixture of 
two chi-squared distribution with k1 and k2 degrees of freedom 
. That is P-value= P (χk1: k2 ≥ LRT Statistics)= 0.5 P( χk1 ≥ LRT 
Statistics )+ 0.5 P( χ k2 ≥ LRT Statistics ). 
 
 
Selection of the covariance structure 
 In the previous section we selected the random 
effects based on the assumption that random 
effects account for most of the variation in the data 
and the remaining error components εi have a 
simple covariance structure. In other words the 
covariance matrix Σi = σ2 Ini where Ini is the identity 
matrix of dimension ni. This implies that the 
within-infant measurements of arm circumference 
are independent and have constant variance σ2. In 
what follows we extend this assumption and 
search for a different type of covariance structure. 
We investigate in a more confirmatory way for the 
general linear mixed model (3). The covariance 
matrix in (3) was expressed by Vi = + Σii ZDZ ′ i 
where D is the covariance matrix of random effects 
bi and Σi is the covariance matrix of εi. The error 
term encompasses both measurement error and 
serial correlation. Here by keeping the covariance 
matrix D unstructured, we will find the best 
structure for Σi. 
 The likelihood ratio test cannot be used to 
differentiate between models with different 
covariance structures, if these models are not 
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nested to each other. On the other hand SAS 
procedure PROC MIXED allows to fit mixed models 
of different types of covariance structure but it 
only provides information criteria to select 
between such models; here we use Akaike’s 
Information Criteria (AIC). The AIC is based on 
decision theory and penalizes the log-likelihood by 
subtracting the number of variance components in 
the model. The model, which has the smallest AIC 
in absolute value, will be considered the ‘best’ 
model. It should be strongly emphasized that 
information criteria only provide rules of thumb to 
discriminate between several statistical models. 
They should never be used or interpreted as formal 
statistical tests of significance (Verbeke and 
Molenberghs, 2000). The approach used for 
selection of the covariance structure is to fit several 
structures and compare them using AIC. The values 
of the AIC for some of the covariance structures 
considered are displayed in Table 2. From the table 
the AIC are in favour of a heterogeneous first order 
autoregressive (ARH (1)) covariance structure. 
However, all of these models, except the one with 
simple covariance structure, suffered from not 
having a positive definite covariance matrix. The 
estimates for elements of matrix D are displayed in 
Table 3. 
 
Table 2. The Akaike’s Information Criteria (AIC) obtained 

by fitting models with different covariance struc-
tures. 

 
Covariance Structure  AIC 
Simple  -4165.9 
First order autoregressive  -4009.2 
Power -4009.2 
Exponential  -4009.2 
Gaussian  -4121.4 
ARH (1) -4001.9 

 
 From the table we can see that the estimate for 
d11 for three of the models is zero. The estimates for 
d33  are also very close to zero. SAS procedure PROC 
MIXED also reported that the estimated D matrix is 
not positive definite for all of covariance structures 
considered with the exception of the simple 
covariance structure. This could undermine the 
hierarchical model interpretation of our data. 
 Even though the simple covariance structure is 
inferior in terms of AIC, it is the only structure with 
positive definite covariance matrix. In addition to 
that, there is no strong evidence of serial 
correlation (even before consideration of random 
effects) from our exploratory analysis (Fig. 4). 
Therefore, keeping the covariance matrix D 
unstructured we use the simple covariance 
structure for the remaining error component. 
 While selecting the random effects, the simple 
covariance structure was used and, therefore we 

are forced to select the same. Hence there is no 
need to check for random effect again, and as a 
result the random quadratic time effect will be 
used. However, we need to test for the mean 
structure of the model we have adopted. The next 
step is whether we can build a polynomial model 
of degree 3 or more or whether we can simplify the 
model by using a linear rather than a quadratic 
time effect. By fitting models with and without 
cubic effect, we get a value for the likelihood ratio 
statistic, which is equal to 432.2 with one degree of 
freedom. This corresponds to a p-value of less than 
0.0001. The F-test (Table 4) also yields similar 
results. We therefore, include the cubic time effect 
in our model. 
 A polynomial regression model with fourth 
degree term was also tested; but its effect is found 
to be insignificant (results not shown). The tests for 
random effects also retain the quadratic random 
effect. The restricted maximum likelihood 
estimates (REML) and standard errors for the fixed 
effects well as the variance components of the 
fitted model are presented in Table 5. Therefore, on 
the basis of the above considerations, the fitted 
model can be stated as: 
 
  32 007.017.027.179.10ˆ ijjijiji tttY +−+=

where t is measured in months. 
 
 From this we can see that arm circumference is 
dominated by the linear term early in life, with 
contribution of the quadratic and cubic terms as 
the child ages a few months. This follows the 
smooth estimated population growth curve (Fig. 2) 
indicating that arm circumference stops growing 
for several months. Possibly there could be losses 
in circumferences. This observation is an indication 
that the cause for the losses could be due to 
malnutrition. This incidence started to take place 
after the age of about 4 months - a time when 
infants need to be fed additional solid food.  
 
Adequacy of model 
 The suitability of the statistical model for the 
data should be examined before inferences based 
on the model are made. What we have done in our 
case is take up this issue after performing 
inferences. We did this just for the sake of 
convenience in reporting. In this section we only 
try to check the assumptions made about the 
dropouts and make some informal checks for the 
model goodness-of-fit. 
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Table 3. The Covariance parameter estimates (dij = elements of matrix D) for the different covariance structures. 
 
Covariance Structure  d11 d21 d22 d31 d32 d33 
Simple 0.52770 -0.00994 0.07926 -0.00135 -0.00483 0.000334
First order autoregressive    0 0.06707 0.02689 -0.00401 -0.00100 2.027E-6
Power 2.34 E-18 0.06707 0.02689 -0.00401 -0.00100 2.029E-6
Exponential  0 0.06706 0.02689 -0.00401 -0.00401 2.019E-6
Gaussian  1.65 E-17 0.07263 0.02646 -0.00445 -0.00100 5.61E-21
ARH (1) 0 0.10970 0.02335 -0.00749 -0.00081 0

 
 
Table 4. Tests for fixed effects. 
 
Effect Numerator degree of 

Freedom 
Denominator degree of 
freedom 

F-test Statistics P-value 

Linear time effect 1 436 1339.13 < 0.0001 
Quadratic time effect 1 414 680.91 < 0.0001 
Cubic time effect 1 1491 400.73 < 0.0001 

 
 
Table 5. REML estimates for the parameters of the fitted mode. 
 
Effect  Parameter Estimates Standard Error(Sandwich) 
Intercept  β0 10.7892 0.05024
Linear Time Effect β1 1.2654 0.03452
Quadratic Time Effect  β2 -0.1659 0.00635
Cubic Time effect β3 0.0067 0.00033
Covariance of bi  

Variance (b0i)  d11 0.6724 0.0717
Variance (, b1i) d22 0.1090 0.0121
Variance (b2i) d33 0.0005 0.0001
Covariance of (b0i, b1i) d12 = d21 -0.0410 0.0223
Covariance of (b0i, b2i) d13 = d31 0.0007 0.0016
Covariance of (b1i, b2i) d23 = d32 -0.0069 0.0009
Covariance of εi  
Variance of εi σ2 0.4824 0.0175

 
 
 
Missing data issues 
 Initially, it was planned to measure arm 
circumference in seven visits (every other month 
starting from birth). However, we did not succeed 
to have the same number of measurements for all 
infants. Some data are simply missing or some 
infants have measurements for fewer than seven 
occasions. 
 Here our focus of attention is on the dropouts, 
where a child is observed until a certain point in 
time, thereafter no measurements are taken. 
Therefore, we will investigate the dropout process 
and check whether it affects our earlier analyses 
concerning the mean arm circumference profiles, 
performed by PROC MIXED procedure in SAS. 
 A dropout process is said to be missing 
completely at random (MCAR) if the dropout is 
independent of both unobserved and observed 
data, and missing at random (MAR) if, conditional 
on the observed data, the dropout is independent 
of unobserved measurements. If the dropout 
process depends on unobserved measurements, 

the process is termed as missing not at random 
(MNAR). If a dropout process is random, then valid 
analysis can be done through a likelihood based 
analysis that ignores the dropout mechanism, 
provided the parameters describing the measure-
ment process are functionally independent of the 
parameters describing the dropout process, the so 
called parameter distinctness condition. That is, 
when the parameters describing the measurement 
process and missing process are distinct, within the 
likelihood framework ignorability is equivalent to 
having both MAR and MACR (Verbeke and 
Molenberghs, 2000). In this case a valid analysis 
can be performed using SAS procedure PROC MIXED, 
provided the order of measurements is correctly 
specified. 
 We will now explore the missing data process by 
assuming that the dropout probability at occasion j 
depends on both the current outcome Yij and the 
previous one Yij-1. This leads to the following 
model 
 



                                                                                                                                                                Sileshi Fanta 8

 
1210)|0(1

)|0(
ln

−
++=















=−

=
jiij

iij

iij yy
yRP

yRP
ψψψ  

 

with   




=
otherwsie
observedisYif

R ij
ij 0

1

 
 Observe that P(Rij = 0|yi ) is the conditional 
probability of a subject i dropping out at time j 
depending on the current outcome Yij and 
previous outcome Yij-1. 
 The whole sample of 450 subjects considered in 
this study is used to estimate the parameters. The 
assumption considered here is that the relationship 
among the measurements from a subject are the 
same whether or not some of these measurements 
are unobserved due to non-response. It is this 
assumption that allows us to infer something 
about the informativeness of the non-response 
process (Verbeke and Molenberghs, 1997). If the 
value of ψ1 is non-zero, then the dropout process 
depends on the unobserved measurements and it 
is a MNAR model. If ψ1 is zero and ψ2 is different 
from zero, then it is a MAR model that depends on 
previous measurements. We assume the dropout 
process to be MCAR when both ψ1 and ψ2 are zero. 
 The results of these three models, obtained from 
OSWALD Software in S-PLUS, are summarized in 
Table 6. The time effect with a polynomial of 
degree three is incorporated in the mean structure 
of the linear mixed model. 
 
Table 6. Parameter estimates and likelihood analysis of the 

dropout process. 
 

Dropout Modeled  Parameter  
MCAR MAR MNAR

Intercept 10.860 10.786 10.789
Linear time effect 1.065 1.284 1.258
Quadratic time effect -0.121 -0.169 -0.164
Cubic time effect 0.004 0.007 0.007
Dropout Parameters   
ψ0 -3.235 0.903 -0.227
ψ1 0 0 -0.181
ψ2 0 -0.329 -0.049
-2 loglikelihood 23050.96 22926.44 22923.82

 
 
 The likelihood ratio test statistic used to compare 
MAR with MCAR is 124.52 with one degree of 
freedom and the corresponding p-value is less than 
0.0001. This rejects the MCAR assumption, the 
dependence of the probability of the dropouts on 
the previous observed measurements. The com-
parison between MAR and MNAR yields a likelihood 
ratio statistic of 2.61 with one degree of freedom. 
This corresponds to a p-value of 0.106, favouring 
the assumption of MAR. Based on the above 
suggestions, performing a likelihood ignorable 
analysis in SAS procedure PROC MIXED is justifiable. 

We can, therefore, analyze all available 
information without the need neither to delete nor 
to impute measurements or the entire subjects. 
 
Model checking 
 Some graphical techniques were applied to 
informally check whether our models fit the data 
set well. Our models are the models for the mean 
and covariance structure of the data. Therefore, it is 
necessary to compare the fitted and observed mean 
response profiles of arm circumference as well as 
the model based and sample variance functions. 
 Loess smoothing technique is applied to 
summarize the trend of average arm circumference 
as a function of time. This technique estimates the 
underlying regression function without any 
restrictive parametric form. In addition to its use in 
assisting to choose the parametric models, it can 
also be used as diagnostic tool by comparing the 
parametric and non-parametric fits. 
 The superimposed fitted average profile on the 
smoothed Loess curves (two different bandwidths) 
are indicated in Figs 5a and 5b. Figure 5a compares 
Loess fit (smoothing parameter = 0.45) with our 
fitted average arm circumference. Figure 5b 
compares Loess fit (smoothing parameter = 0.8) 
with the fitted mean arm circumference. From 
these plots we can see that the fitted average 
profile is very close to the smoothed curves. 
However, the discrepancy gets larger after the age 
of 8 months. This could be either due to relatively 
small number of measurements considered after 
the age of 8 months or it could be due to the 
covariance structure considered.  

Fig. 5a. The fitted average profiles of arm circumference 
(small bandwidth). 

 
 
 The other thing to do was to check the 
appropriateness of the selected covariance 
structure informally. Therefore, the model-based 
fitted variances are compared with the sample 
variances, which are based on the observed data. 
The model-based variance at time t is given by: 
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 Substituting the estimated values of the 
covariance matrix of the random effects D and the 
residual variance σ2 reported in Table 4, we have 
the following fitted variance function: 
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Fig. 5b. The fitted average profiles of arm circumference 

(large bandwidth). 
 
 
 The plot of this function together with the 
sample variance of residuals is displayed in Figure 
6. Both variance functions show similar trends up 
to the age of 6 months. Beyond 6 months there is 
deviation between these variance functions. This 
could be due to the fact that a relatively small 
amount of data was used in the period after 6 
months. Nonetheless, the deviation will not create 
problems on our inference because we employed 
inferential procedures based on the sandwich 
estimator for the standard error of the fixed effects. 
The sandwich estimator yields a consistent 
estimator of precision even if the covariance model 
is not correctly specified. 
 

 
 
Fig. 6. The fitted and sample variance function. 
 

INTERPRETATION AND DISCUSSION 
OF THE RESULTS 

 
At the beginning some graphical displays were 
used to have a closer look at the data. Based on 
these exploratory analyses a preliminary model 
selection was made. The selected preliminary 
mean structure was quadratic time effect. Having 
done that the selection of random effects also 
resulted in quadratic random effect. While 
selecting the covariance structure, by keeping the 
covariance matrix D of the random term 
unstructured, a search for the best structure for the 
covariance of the remaining error component was 
made. Even though we tried different structures, 
we ended up in choosing the simple covariance 
structure. This is due to the assumption that all 
repeated measures are independent of each other. 
This means that, the correlation of successive 
observations is explained only on the unstructured 
covariance matrix of random effects, and all the 
variability in the data, which is not taken into 
account by the random effects, is assumed to be 
purely measurement error. 
 Based on the preliminary mean structure a 
model was fitted and tests for fixed effects were 
made. A test for polynomial model with third 
degree term is found to be significant while the 
fourth degree polynomial was not significant. The 
test for random effects also resulted in the same 
quadratic random time effect. Therefore, we 
changed the model for the mean structure from 
quadratic time effect to the cubic time effect. 
 We applied inferential procedures based on the 
sandwich estimator for the standard error of the 
fixed effects. The sandwich estimator yielded a 
consistent estimator of precision, even if the 
covariance model was not correctly specified. An 
attempt to informally examine the aptness of our 
statistical model was made by using the Loess 
smoothing technique to check whether our model 
fit the data set well. The fitted arm circumference is 
very close to the smoothed curves. Three dropout 
models were fitted and compared with one 
another using the likelihood ratio statistic. The 
results favoured Missing at Random (MAR). This 
suggests that the likelihood-based ignorable 
analysis is justifiable. Our final model is dominated 
by the linear term early in life, with contribution of 
the quadratic and cubic terms as the child ages a 
few months. 
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CONCLUSIONS 
 
From our modelling process the following 
conclusions were made. The linear mixed model, 
which contains only time as explanatory variable, 
indicates that arm circumference is not constant 
over the first year of life. The growth of arm 
circumference increases sharply until the age of 
about four months and then it slows down 
thereafter. This incidence is quite completely 
unusual because normally growth was expected to 
slow down after the age of one year. This early 
stop in growth is an indication for malnutrition; of 
course the growth depends on other covariates 
considered in the model. The effects of these 
covariates on our model need further study, and 
these will be studied in the future. 
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