SINET: Ethiop. J. Sci., 24(2):143-150, 2001
© Faculty of Science, Addis Ababa University, 2001 ISSN: 0379-2897

REGULARITY THEOREM FOR FUNCTIONS THAT
ARE EXTREMAL TO PALEY INEQUALITY

Seid Mohammed
Department of Mathematics, Faculty of Science, Addis Ababa University
PO Box 1176, Addis Ababa, Ethiopia, E-mail: maths.aau@telecom.net.et

ABSTRACT: In this paper we study the asymptotic behavior of
functions that are extremal to the inequality introduced by Paley (1932) via
a normal family of subharmonic functions.
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INTRODUCTION
Let u be a subharmonc function in the complex plane. We set

B(r,u) = supu(z), u*(z)=max(u(z),0).
|1Zi=r
N(r,u) = —51;—[ qu(re‘” )dé

0
and define the Nevanlinna characteristic of u by T(r) = T(r,u) = N(r,u*).

The order p of u is by definition

p= llmsuplw
roe logr
Paley’s inequality asserts that
B(r,u) < P 1)

T(r,u) sinzp
provided 0 <p S—‘l;z- .
Inequality (1) was conjectured by Paley (1932) in the case where u=log | f(z) |

for entire function f. Govorov (1969) proved Paley’s conjecture. For a proof of
(1) for general subharmonic u, see Essen (1975). The function
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y zpr’ cos pl
u(re'°)=£sih-;’?p—, 6] <m @

in a subharmonic function which is extremal for (1) with

T(ru)=r"
and
B(r,u) = _.z_rz‘_’_ .
sin zp

Indeed all subharmonic functions extremal for (1), i.e., for which equality
holds in (1) behave asymptotically as (rotations of) the subharmonc
function in (2). We shall prove,

Theorem 1:  Let u be a subharmonc function of order p, 0 < p s% If

=— T(r,u) _ sinzp

lim )
B(r,u) p
Then
i) T(r,u) =1° L(r)
. __mp
ii) B(r,u) " Sin7p Tru), (T—o>xo,reG)
i) N@Eru)~T(ru), @F-ooreG),
where L(r) varies slowly in a set G of logarithmic density one, i.e.
. L(or) _
im S -1, <o)
reG
holds (uniformly for ¢ in any interval A'<c A, A >1) with
® b
G= U[an,b,‘], [a" o, - oo] @)
n=1 an

satisfying

_['t"dl ~logr, (r—> ).
GA\.r} '
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Moregover, for any sequence {r} < G (rm — «) there is a subsequence of
positive integers I = {nx} and a real a € [ -n,n] such that for almost all z in
the set {re®, |6 - & | .< m} with respect to the Lebesgue measure of the plane
we have
{ P
i) lim u(r,z) npr

: 0-a), [6-a]s<m z=re’
n-—»oo T(r u) smzp cos P( (X) I al T, zEIe

SOME FACTS

Let u be a subharmonic function in C of order p, 0 < p < w. By a sequence of
Pélya peaks for T(r,u) of order p we mean a sequence {rn} of positive

P
numbers such that T(t,u) < (1 + &n) [—rl ) T(rn,u) holds for some sequence

n

€n—0, r en—> o0 and for all t, such that enrn <t < % . If p is finite T(r,ti) has

a sequence of Pdlya peaks of order p (for a proof see Edrei (1965)). We also
need the *-function of u introduced by Baernstein (1974) which is defined
by

u*(re® =L sup |u(re®)d®, (0 <r<ow, 00 <), . 5
p
27 E~20

where Ec [ -n, n ] and |E| = Lebesgue measure of the set E. It is shown
that u* is subharmonic in the upper half plane, n* and is continuous in the
closure of n* except possibly at the origin. It is also proved that if the
function 6 — @ (re®), for fixed I > 0 and |6| < =, is the symmetric

decreasing rearrangement of u (re'), then
e

u*(re®) = 1 [ #@ehde (0<osm).
‘ 2r 5
u* satisfies (see also Hayman (1989), chap. 9, especially p. 712).

= *(rei’ *(r) =
T(r,u) max u (re™), u*(r) =0 (6)
and

B(r,u) = ’rgg* (xe®) |e=0 = i (r).

Proof of Theorem 1: First we shall establish assertions (i) and. (ii) of
Theorem 1. We use the well-known result due to Petrenko (1969) given
below by Lemma 1.
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Lemmal. Suppose uis subharmonicinC. Fixy, 0<y<1, and let
_zt}{
k(t,y)=7y————.
(t'+1)2
Then
g dt r
B(ru) s |u(te™)k (7 ,7) — + c|—
() oj( K ,7) [R]

for an absolute constant c.

% R
T@Ru), (0<r< ), @)

Besides Petrenko's (1969) proofs for Lemma 1 are given in Essen (1975) and
in Edrei and Fuchs (1976, Lemma 11.1) where it was shown that

. o dt s 1
k(sy)= |k(t,y) = =—7—— ,(0<r=).
6= [N =y - (0<7)

We api)lf Lemma 1 with y = 1 together with the hypotheses of Theorem 1
to obtain (on letting R — ) in (7) .

sinzp-

T(r,u) < [ + ,o(l)J °] T(tu)k(r/ t,y)—‘%t , (r > ) ®)

= [‘Si“”p + o(l)J ()" k(r7).
il s

Since- Iéf(p,y) =P and T(r,u) is increasing it follows from the Drasin
sin p 8

and Shéa (1976) Tauberian theorem that there is a set G of the from (4),sixch
that '

T(r,u) = r’L(r) )
where L(r) varies slowly in G, and further
T k@ey) = | —L—" +o(l) | T(r,u), (r— € G) (10)
’ v sin 7o T '
Thus from -(7), (10) and the hypotheses of Theorem 1 we conclude that
lim 20 7P 1m

roe T(r,u) sin zzp
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This proves assertions (i) and (ii) of Theorem 1. It also follows from (9) that.
any sequence {ra} ¢ G, rn — o, is a sequence of Polya peaks for T(r,u) of
order p (see Edrei (1969) Lemma 4). We proceed to prove Theorem 1."

Let {ra} be any sequence of Polya peaks for T(r,u) of order p, 0 < p < 90,.‘,
Then the sequence

u(r,z)
un(z) = eC, n=1,23,... (12
0= Ty 7 ) W
forms a normal family of subharmonic functions in the sense of Ariderson
and Baernsteirr (1978), i.e,, there is a subharmonic function v is C and a
subsequence I = {nk} of positive integers such that

2z

a) lim I | un(re®®) - v(re’)|d6=0, (0<r<w) (13)
et 0
. . T(r,u) _
b) 12101? T(r,un) = 31_’rri T(r,,,u) T(xv)<r’, (0<r< oo)

Thus if u satisfies the hypotheses of Theorem 1 then from (9) and (13) we
have

T(x,v) =1". (14)
Indeed we prove,

Theorem 2: Let u be a subharmonic function that satisfies the hypotheses
of Theorem 1 and {rm} a sequence of Pélya peaks of T(r,u) of order p,

0<ps—; If v is a subharmonic function that satisfies (13) corresponding to u
and the sequence {rn}, then

a) T@Erv)=r"=N (r,v)

b)  vire) =

- -al < -
sm7rp cosp(0-a), |8-a] <nforsomea €[ n:,n]

It is clear that assertions (iii) and (iv) of Theorem 1 follow from Theorem 2
and (13). We first establish, :
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Lemma 2. -Suppose u satisfies the hypotheses of Theorem 1 and {r} is a
—;—. Kvisa
subharmonic function that satisfies (13) corresponding to u and the

sequence {ra} then v* is harmonic in the upper half plane and

sequence of Pélya peaks of T(r,u) of order p, 0 < p <

. _sin p°
v (red) = rpsmztp (0<6<mw)
: - P ’ : e 1o yi™ =P )
Proof. First we prove B(r,v) = sinzo Since v*(re"")<T(r,v)=r" and v*(r)=0
by (6) and (14), we have by Phragme’n - Lindedf principle
o _ r°sinp®0
*(ref —_— 0<0< 1
v¥(rel) < sinzp ( ) (15)

* P
which implies ov? (re®) |o=o< —2_ . Thus it follows from (6) that
00 sin zp

B(r,v) < —&

sin zp

To prove the reverse inequality we let r > 0 and choose one[-n,7),
(nel={ny}) such that B(r,un) = un(rei’n), where un is defined by (12).

Assume o, = 0gas n — o (n € I). Then for any s > r, we have
1 27 o
Biru,) S —— [u, (s¢%)pr/a(0 - o)d. (16)
2z
where p:(6) is the Poisson kernel. By dominated convergence theorem and
by (13) it follows (letting n — o, n € I' in (16)) that

j v(se®) pr/s(6 - an)d0 < B(s,v). 17)
sin 7rp o

Since (17) holds for anly s > r and B(s,v) is a continuous function of s, we

4
have, letting s — r in (17), s’z):r > < B(r,v). Thus B(r,v) = su/::r 5 To prove

the lemma we apply (7) to v with y =—;§ (0 < a < 1), and using (16) we get
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mpr® e o de_ sinpa] dt _ mpr’
sinzp By JV (te”) kr/ t’y) : sm ﬂpI ( )—i . smzrp
which implies v*(te’®) =.¢* Ssl:)z o . Thus: applymg the maxmnum principle

ek w0

to (15) we conélude that v*(rei’) = Lg%%g (;Qi< ',

To complete the proof of Theorem 2, let v be the symmetrlc decreasmg
rearrangement of v, so that L

vi(re®) = — _[V (xe®), (0<6 <m).

Since by Lemma 2 v*(z) is harmonic in {z 0< arg(z) < n} it follows from
(18) that .

0= Avt(re®) = —— jA’J (re)ds, (0<0<m). |
. - 27[ -—0, = . )

Thus ¥ is-harmonic in fre?® : r > 0, | 9] <n}. Letr, >0 and a € [-m, 7] be
such that v(r,e’®) = B(ry,v) =¥ (r,) Then a companson 'of v*. with the
subharmonic function i :

O+a

va(re'®) = —;7; J v(re)d¢

~0+a

shows that (Essén and Shea , 1978/79)

v(ze®) = ¥ (2). (|arg(z)| <m).
By Lemina 2, (18) and (19) we get

P
v(re®) = sfrf:r S cosp0-a), (|6-a| <m).
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