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ABSTRACT: In this paper we study the asymptotic behavior of 
functions that are extremal.to the inequality introduced by Paley (1932) via 
a normal family of sqbharmonic functions. 
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INTRODUCTION 

Let u be a subharmonc function in the complex plane. We set 

B(r,u) = supu(z) , u+(z) = max(u(z),O). 
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and define the Nevanlinna characteristic of u by T(r) = T(r,u) = N(r,u+). 

The order p of u is by definition 
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Paley's inequality asserts that 

I
. B(r,u) trp 
1m ~--

- T(r,u) sintrp 

provided 0<: p ~~. 
2 

Inequality (1) was conjectured by Paley (1932) in the case where u=log I f(z) I 
for entire function f. Govorov (1969) proved Paley's conjecture. For a proof of 
(1) for general subharmonic u, see Essen (1975). The function 
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