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ABSTRACT: Conditions for the consistency of the estimator $2 of the variance

. 2 . .
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INTRODUCTION

Consider the linear regression model for spatial correlation

y=Xp+u, u=Ce, (1)

where y is a T x1 observable random vector, X is a T xk matrix of known
constants with full column rank k, 8 is a kx 1 vector of unknown parameters,
€ is a Tx1 random vector with expectation zero and covariance matrix
Cov(e) = o:I (I is the T-dimensional identity matrix and c: an unknown

positive scalar). C denotes a 7x 7 nonsingular matrix such that the product CC'
has identical diagonal elements. The assumption that the diagonal elements of
the matrix product CC' are all identical indicates that we consider only
homoscidastic disturbances u,’s which are correlated.

The ordinary least squares (OLS) estimator of the unknown parameter f§ in
model (1) is given by B =(X'X) "X’y with the covariance matrix
Cov(B) =o2(X X)XV X(X'X)"!, where V., = CC'.
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The OLS based estimator s = (y-XB) (y-XP)/(T-K) of the disturbance
variance, in the linear regression model with correlated disturbances, is biased
and not consistent in general (see Dhrymes 1978, Chapter 3). This means that
when the disturbances are correlated, the standard procedures for testing
hypothesis and constructing confidence intervals with respect to the regression
coefficients lead to incorrect conclusions.

Several papers investigate the behaviour of the bias of s* under different
correlation structures (Martin, 1974; Neudecker, 1977; 1978; Dufour, 1986;
1988; Kramer, 1991; Kiviet and Kridmer, 1992; Fiebig et al., 1992; Song,
1994). In contrast, there are very few published studies on the problem
concerning the consistency of the variance estimator in the presence of
correlation. Based on the sample variance of the disturbances, Krdmer and
Berghoff (1991) give a simple sufficient condition for the consistency of s
Baltagi and Krimer (1994) deal with the consistency of the estimator in the
linear regression model with error component disturbances.

The present paper provides conditions for the consistency of the estimator §*
when the disturbances follow a first-order spatial error process.
CONSISTENCY OF ¢
Spatial dependence among the disturbance terms can be expressed in a number
of ways. In general, an autoregressive or a moving average formulation could
be used as is frequently done in time series analysis.
Let the components of « follow a stationary first-order spatial autoregressive
(AR(1)) process
T
u = pLwu; + ¢

i=1

or, in matrix form

u=pWu~+e, (V3]
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where p denotes a spatial correlation coefficient for a given area partitioned into
T nonoverlapping regions R,, i = 1, ... , T. Wis a weight matrix with known
nonnegative weights defined by Cliff and Ord (1984, pp. 17-19)

>0, ifregionsR,.andeare neighbours (i+j)
i =0, otherwise.

The element w; of the weight matrix shows the strength of the effect of region
R; on region R,

When the components of u are of the pattern

T
u, = pLw.e + ¢

i1 Ay
or, in matrix form
u=pWe + € (3)

then we have another scheme which is known as first-order spatial moving
average (MA(1)) process.

Using the specification in (1) equations (2) and (3) can be written as
= -1
u=>U-pW)'e 4 u=(U~+pW)e, @

respectively, where in AR(1) case the matrix 7 - pW must be nonsingular. From

(1) and (4), we get four possible structures of Cov(u) = o:'CC /= o: V, fora
first-order spatial error process:

[T+pW)YT+pW) : MAQ)

v d+pW) : MA(Q)-conditional
*|a-ew)ta-e W'yt ARQ)
d-pwW)! : AR(1) - conditional.

&)
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The conditional cases are special cases of the unconditional process (see
Bartlett, 1971; Besag, 1974). Note that the possible values of p must be
identified to ensure that V. is positive definite (see Horn and Johnson, 1985, p.
301).

According to the assumptions given in model (1) the matrix V, has identical
diagonal elements, and denoting this element by v, the covariance of u can be
expressed as

Covw) = o’ V, = (vad)V = a2V, ©)

2 . . . .
where V' = (1fv)V, and o, = vo: is the variance of the disturbances u,, i =

1, ..., T. Using the above assumptions under spatial process we can now write
model (1) as the general linear regression model:

— + - = 2
y=Xp +u Eu =0, Cov@) =0,V ¢

Let u,(A) be the i-th eigenvalue of a square matrix A, andlet 2, and ¢ M.

denote convergence in probability and in quadratic mean, respectively. Under
the assumptions of model (7) Ktimer and Berghoff (1991) state that the oLs

based estimator §2 = (T-K)s?/T of o is weakly consistent if

/,
55 2ol and p (V) = oD ®)
where p.. (V) denotes the maximum eigenvalue of V. In other words, §* is
weakly consistent if the sample variance of the true disturbances is consistent,
and p_ (V)/T—0as T—s 0,

Whether the above result is operational under spatial error process, depends on
the form of the error process and the weight matrix W. Note that the consist-
ency of §° is implied by that of S because (7-k)/T converges to one as T goes
to infinity.



SINET: Ethiop. J. Sci., 23(2), 2000 185

In the following, conditions that guarantee the consistency of §° in the presence
of spatial correlation will be given. For this purpose, the following results are
needed.

Definition

An interval (o, p.), p,, 0, € [-1, 1], where p,<p, for.a real valued function
f:(p;»p,)— R is said to be suitable if

lim flp) _ lim fo) _
P:D=(pd T = @D~ g =0 ©)

that is, for p——p, or p—p, we have f(p) = o(T). o

In this paper, we focus on the positive values of p, so the suitable interval in
the above definition becomes (p,, p,) with p,, o, €(0,1]. Further, suitable
intervals will be assumed in calculating the eigenvalues of the matrix V as a
function of p.

Lemma 1

Suppose that the weight matrix W is symmetric with row sums equal to unity,
and let V = (1/v)V., where V., is as given in (5) with diagonal elements all equal
to v. Then y,.. (V) = o(7) for values of p from a suitable interval (p,, p,), p,>0.

Proof*

The asserted result will be proved for MA(1) and conditional AR(1) cases given
in (5). Similar arguments can be used for the proofs of AR(1) and conditional
MA(1) cases.

Under first-order spaiia! moving average process the matrix Vis given by V =

(1) + pW) (I + pW'). Using the assumption that the matrix W is symmetric
we can express the eigenvalues of V in terms of the eigenvalues of W as

BAV) = <A+ PP, v,p>0:
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Denoting the largest eigenvalue of the weight matrix W by p.. (W), and
assuming that the eigenvalues of W and V are in ascending order of size for
positive values of p we have

BAV) S0P W

If the row sums of W are all equal to one, then the absolute value of p(W) is
less than or equal to one for all i (see Graybill, 1983, p. 98). This implies that
el W) < 1 and

1
Pg(V) ‘< ‘;(1 + p)2’ p>0-
From this we get u,...(V) = o(7).

For the conditional AR(1) case, the matrix Vis givenas ¥ = (v(I-pW))™!, and

S S
MY S ey

Analogous to the MA(1) case we get, for positive values of p,

U4 .
p(V) < sd-p) 10
Using (10) we obtain p,. (V) = o(D). o
Lemma 2

Assume that the weight matrix W is symmetric with row sums equal to unity.
When the components of u follow a first-order spatial MA(1) or AR(1) process,
then for values of p from a suitable interval (o,, p,), p, > 0,

u'P,u
Tx L 0,

where Py, = X(X' X)* X'.
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Proof:

Let tr(A) denote the trace of a square matrix 4. For the expectation of u'Pu/T
we have (see e.g., Magnus and Neudecker, 1988, p. 247)

w'Pou
E(—X

) = %1 (tr(PxCov(u)). + E(u)P,E (u))
5 (1)
TPV -

The trace of the matrix product P,V can be expressed as

k
r(PyV) = w(Z'VZ) = ¥ p,(2'VZ),
i=1
where Z = X(X'X)'?. This implies
u'Peu
T

2 ¢
E(—X)= %‘,‘-}: b, ZVI).
i=1

From Poincaré separation theorem (see Horn and Johnson, 1985, p. 190) it
follows that all eigenvalues of Z'VZ are less than or equal to .. (V ). Using this
fact gives

2

w'Pyu o,
) < —fkum(V) : 12)

T

E(

By applying Lemma 1 we get p,..(V) = o(T), and from (12) it is clear that
u'Pyu
T

Since Py is symmetric and idempotent, u’Pyu = 0. Furthermore, for € > 0
we have (see Davidson, 1994, p. 132: Markov-Inequality)

u'Pyu u'Pyu
P(——>¢") < E(——)—0 (T— ) .
T T
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This means, by definition, (4P, u)/ T 20, o

Now, given model (1), suppose that the error vector € has the following finite
moments:

E(e®e€/) = @ and E(ce/Qce) = ¢, 13)
where ® denotes the Kronecker-product.

The following theorem provides a sufficient condition for the consistency of $?
under first-order spatial error processes that can be verified in practice. In what
follows let C; denote the i-th row of the matrix C in model (1).

Theorem 1

Let the weight matrix W be symmetric with row sums equal to unity. Suppose
that the components of € in model (1) are independent and identically distrib-
uted, and the components of u follow a first-order spatial AR or MA process.
Then §? is weakly consistent for 0,2, if for positive values of p from a suitable
interval (o, p,), p, > 0, and two neighbouring regions R, and R;

m(C/C) = o(T) . (14)

Proof:
The oLs based estimator S can be expressed as

§2=—X === -
T T T
From Lemma 2 we have
u'P,u
2 20
and therefore it suffices to show, under condition (14), that
u'u 2
E

The proof of the theorem is apparent if, for T— <, we can show
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/ /
E(—l!—TE)~—+0,2‘ and Var(l‘}’i)__.o . (15)

For the disturbance vector u = Ce, as defined in (1), the following holds:
E('u) = E(€'C'Ce) = w(C'Ca’l) = o’tr(CCY).

Since the matrix V. = CC’ has diagonal elements which are all equal to v,
Ew's) = o’a(V) = a’Tu ,
and from the expression Cov(u) = o>V = oz V,=v 02 Vv, it follows that

/.
Uu 2 2
E(T) = er = Oy

showing the first part of (15). Now, to prove the second part of (15) which
states
/. /
Var(“—T‘i) = E(u—;)z—(oi P—m0  (T—o),

it suffices to show that E((u’u)/ T)? converges to (03)2. In order to get the

result we will first consider E(u'u)®. Since W is symmetric, we obtain C = C’
implying u'u = ¢'CC'e = €'V.¢, and

Eu'n)y?> = E@E'V,ee'V,e) . (16)
Using the result of Rao and Kleffe (1988, p. 32) we get
E(e'V,e€'V € E(tr(V, e€'V, e€))

r(V,QV)v)
where ¢ = E(ee'Qeé€) .

[}

17

]

When the components of ¢ are independent and identically distributed, then

{4?“, i=j=i’

E(cee.,) =
0, otherwise

and
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(o2 Y2, pairwise equal
Egene.) =1 o, isj=it=j"
0, otherwise.

where ¢* = E(g;)’ and ¢ = E(g)*.
Let ¥;; be a Tx T symmetric matrix with elements
4

O, »
‘,’q(i‘s h = ""ij(l’i‘) = {

0, otherwise.

i=lj=i*

Further, let ¥,, ¥,, ..., Yy be TxT diagonal matrices with diagonal elements

equal to ¢ or o: such that

i ¢, . i=j
i,l) =
¥ : R otherwise.

For the expectation of the Kronecker-product § we obtain

'1'1 1"12 "’uv
"’Tz ‘I’n—l ‘J’T

This matrix can be split into
¥ = ol + (9-0D)I" + oLy”, (18)

where 1. denotes the 7°x 77 identity matrix. I" and y" denote 77 x T” matrices
given as
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I = 1, i=f=@*-1)T+i*, i*=1,...,T
0, otherwise.

(19)
Vo Uy -~ Yip
VYo ¥ - Yor

Ve -~ Y ¥

with ¥o:= ;; = Op 5, where Oy, ; denotes the TxT matrix whose elements are

i

all equal to zero. The TxT matrix ¢ is given by
i=l1, j=i*

N - L,
q’ij(l :l) = ‘FU(L‘ ) = {0

, otherwise.
and is symmetric according to the definition.

From (16), (17) and (18), we get
E@u)? = a(V,9V,))
= tr(V, @V, )Xoy + (9 -0 + oty™)
= tr(V,®V, )0t L) +tr((V, BV, )¢ ~aDI").
+m((V, 8V )l y). 20)

The first term of the right hand side of equation (20) can be expressed as
tr((V,®V, )0t = oior(V,®V,) = olu(V)r(V,) = o2v?T?, (1)

because tr(V,) = vT (see Magnus and Neudecker, 1988, p. 28).

By the assumption in model (1) all diagonal elements of ¥V, QV, are equal to
v?, and the matrix I" has exactly T diagonal elements which are equal to unity
(zero otherwise). Thus for the second term we have

r(V,®V, )@ -oDI*) = (¢ -0)Tv?. 22)
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Since V. is symmetric, we can write the third term as (see Magnus and
Neudecker, 1988, p. 30)

(V. BV ") = ol(vec(V,®V,)) vec(y*) . (23)

Suppose g; stands for the j-th column of an mxn matrix 4. Then vec(4) is a
vector of length mn with g, as its first m elements, a, its second m elements and
SO on.

For R, and R; being neighbours, E(uu) = o:V,(i, J), and by successive
calculation we get

T g
aec(V, OV, ) vec(¥?) = 23 ¥ @)’ , @4)
i

¢

where g; denotes the number of neighbours for the i-th region R,. Furthermore,
u; = C;e = €'C/ and u, = C, e. From this we obtain

E@u) = EE€'C/C;¢) = E(tr(C/C,e€)) = a2tr(C/C}) . (25)
From (23), (24) and (25) follows
T g
atr(V,®V,)¥") = 20: Y Y (r(C/C)) . @6)
i

Using equations (20) to (22) and (26) for values of p from a suitable interval
(pl’ py)

we obtain
R / . . 2
A ECRP - ot e T e

. 20: T gi

otv? s (d2)2. @7

)
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The last expression holds because of the assumption tr(C’; C;) = o(D). <

Example

Let the elements of the weight matrix W be of the form
Wir = Worg = Wi = 1, i=34,.T
w,; =0, oth{rwise.

(23)

Furthermore, let the components of ¢ in model (1) be independent and
identically distributed. If the components of u follow a first-order spatial MA

. . 2
process, then §* is weakly consistent for o).

This can be proved by showing that, for p from a suitable interval (o, p,),
condition (14) is fulfilled. Under a spatial MA(1) process we have V., =
I+ pW)([I+pW’), and this means C = I + pW. If the weight matrix W is of
the form (28), then C is symmetric, and the regions R, and R; with j = T-i+1
are neighbours. Denoting a 7-dimensional vector whose i-th element is equal to

unity (zero otherwise) by €, we get

/ g -
C. =8 +pég.

Using this yields
C.C, = @ + pE)(E) + pE)) ,
implying
tr(C,C))

H

@, E)) + r(pEE)) + r(p&E)) + (& (E,))
=2p, (29)

because tr(é".(é‘j)f) = 0 and #(E(€)) = tr(é}(e”j)’) = 1. From (29) it is clear
that, for p from a suitable interval (p,,p,), r(C; Cj_) = o(T), and the weak
consistency of 2 for oi follows from Theorem 1. o

The next result gives necessary and sufficient condition for the consistency of
$'? under first-order spatial error process.
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Theorem 2

Let the weight matrix W be symmetric with row sums equal to unity, and
suppose that the components of u follow a first-order spatial MA or AR

process. Then §?2 is weakly consistent for 0,2, if and only if, for values of p
from a suitable interval (p,p,), ¢,>0,

u'u 2
LALENY 30
o, (30)

—

Proof:
(sufficiency)

Consider the oLs based estimator
/ /
_uwMu oyl u'Pyu

§2 =X =22 _
T . T T
From Lemma 2 we have
u'P,u
X 20,
T

2

2 ,
and 2 P, o, follows from the assumption wul T P, q,.

(necessity)

If §2 is weakly consistent, then §* _P, o>. This means

uI"u _ “/I;‘xu P23,

From Lemma 2 it holds u’ qu/ T P, o>. So, the statement that S P, o>

is valid if and only if wul T P dl. o
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