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ABSTRACT: The paper discusses the merits of partial shrinkage of the
‘ordinary least square estimator of the coefficients of the multiple regression
model of full rank. Theoretical comparisens of scalar and matrix-valued risks of
the partially shrunken and totally shrunken estimators are given. The strategy of
partial shrinkage is applied to two data sets.
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INTRODUCTION

We consider the multiple linear regression model M{y, X8,0°I,}where y is the
observed n-vector of response variable, X is a nXp non-stochastic regression
matrix of full column rank, § is a p-vector of unknown but fixed vector of

regression coafﬁcxems while o> 0 is the unknown constant variance of the
ErroT terms.

It is known that, although unbiased, the ordinary least squares estimator (LSE)
of the regression eosflicients b = (X'X)'X’'y has some deficiencies that, at
tinies, make its usefulness guestionable. This happens when two or more
exogenous varizbles of the regression matrix are strongly linear dependent.
Under such circumstances a family of biased linear homogenous estimators
commonly known as generalised ridge estimators (Obenchain, 1975 1978) can
be used insiead of b, Members of this family outperform the"LSE on sub-
domains of the parameter space of the regression coefficients,
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Theoretical mean square error (MSE) comparisons between b and any member
“of the generalised ridge estimators can be found, among others, in Trenkler
(1986) and Trenkler (1981). It is also possible to make theoretical comparisons
of MSE’s of members within the same family of biased estimators. The
following section of this paper is devoted to the MSE comparison of the .
shrunken estimator cb, c€ (0, 1), (Mayer and Willke, 1973) and the so-called
generalised shrunken estimator. :

THE GENERALISED SHRUNKEN ESTIMATOR

A member of this class that we consider in this paper is a generalisation of the
shrunken estimator (Mayer and Willke, 1973), which will henceforth be
referred to as the generalised deterministic shrunken estimator (Eshetu
Wencheko, 1998). This estimator has the form b(C) = Ch, C = diag(c),
€@, 1], j =1, .., p. Note that if all diagonal elements of C are equal we
have the estimator of Mayer and Willke (1973).

It is known that the deterministic generalised shrunken estimator has bias vector
and covariance matrix B(Cb) = (C - L)8 and Cov(Cb) .= o*C(X'X)"C,
respectively. The total variance of Cb, that is the sum of diagonal elements of
Cov(Cb), is V(Cb) = o? tr C(X’X)*C!. The scalar risk, that is the sum of the
squared norm of the bias vector and total variance, is G(Cb) = '(C-I,)*8 +
V(Cb). Similarly, B(cb) = (c-1)8 and Cov(ch) = ¢2c*(X’X)" and G(cb) = (c-
1 8’8 + V(cb). Having said the above about the two shrunken estimators we
now give the following results with regard to their risks. In the first result MSE
stands for the mean square error matrix.

Theorem 1: :

MSE(Cb) < MSE(ch) & CX’X)'C - ¢z (X’X)!
< [(c-1)* BF’- diag (c; -1)? B’) o?
= [diag(c-1)>- diag (¢ -1)? 188’/ o2,

where “ <™ stands for the Lowner order of matrices.

The result below follows from Theorem 1 above:
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Theorem 2:
G(Cb) < G(ch) » tr((X'X)'C? - ¢ (X’X)")
< [(c-1)? §'8- B’diag (c; -1)* B/ o?
= [diag(c-1)? - diag (c; -1)%18°8/ o2.

RATIONALE FOR PARTIAL SHRINKAGE

The estimator of Mayer and Willke (1973) provides a biased estimator that is
a simple scalar multiple of b. The scalar shrinkage factor which is less than
unity makes the length of the LSE shorter. The same is true about the
generalised shrunken estimator. In the presence of strongly collinear regressors
some or all variance inflation factors (VIF) of the covariance matrix of LSE could
be unacceptably large. A shrinkage of the LSE by a scalar reduces the magnitude
of all of the VIF’s irrespective of size. If some of the regressors exhibit mild
collinearity and, therefore the VIF’s of the LSE estimator lie between 1 and 10,
such biased estimators are regarded as quite acceptable. The reasoning behind
such a conclusion is based on the fact that whenever the maximum VIF does not
exceed 10 or is not smaller than unity the bias.is taken as tolerable. Note that
in the ideal orthogonal design all diagonal elements of the covariance of the LSE
(with standardised regression matrix) are equal to unity. Marquardt (1970),
Marquardt and Snee (1975), Montgomery and Askin (1981); Snee (1983) and
Trenkler (1981) had advocated the foregoing rationale. This basis is used to
motivate the introduction of partial shrinkage strategy.

We notice that a single shrinkage constant does not take into consideration the
magnitude of individual viF’s; it simply shrinks all components indiscriminately
and, thus the naming total shrinkage. The strategy employed in what we will
call partial shrinkage would leave those ViF’s with acceptable size unaltered -
no need to shrink these. On the other hand, a selective shrinkage will be
performed with regard to the remaining ones that do not fall within what is
sometimes referred to as the Marquardt interval, that is simply the interval [1,
10]. The shrinkage matrix C should also be chosen such that the coefficient of
determination R? will be acceptable.
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EXAMPLES - DEMONSTRATION OF PARTIAL SHRINKAGE

In this section we demonstrate how partial shrinkage can be applied to two data
sets that have been considered in the regression literature as typically collinear.
The first of these is a result from a chemical engineering experiment (Hald
1952, p. 645ff), and the severity of multicollinearity of the data is expressed by
the condition number 37.1063. The second data set from Montgomery and
Askin (1981) deals with household-level electricity consumption. The degree of
collmearlty is given by the condition number 36.6544. In this paper we call the
quotlent of the largest spectral value to the smallest (of X’X) as the condition
number of the matrix X.

* The LsE for each data set and the corresponding VIF’s are gwen in Table 1 and
Table 2, respectively. In the case of the first data set all ViF‘s are greater than
10, while in the second two components (third and fifth) of the LSE have
acceptable VIF’s.

Table 1. Resulits for the chemical engineering data.

b, 31.6071 27.5003 2.2612 -8.3531
v 38.4962 254.4232 46.8684 282.5129

¢’ 0.0260 0.0039 0.0213 0.0035
_— 0.1612 0.0627 0.1459 0.0595
¢;b; 5.0951 1.7241 0.3300 -0.4970
V5 ¢, 11.3930 3.8852 0.7379 -1.1113
V10 ¢ b, 16.1121 5.4521 1.0436 -1.5717

Table 2. Results for household-level electricity consumption data.

b; -8.0726 9.7066 5.0385 3.4468 0.3226

v 191.2968  180.6651 3.9587 11.4890 1.0556
¢ 0.0052 0.0055 * 0.0870 *
¢ 0.0723 0.0744 * 0.2950 *
¢by -0.5837 0.7217 * 1.0169 *
V5 ¢;b, ~1.3051 1.6137 * 2.2738 *
V10 ¢; b, -1.8458 2.2822 * 3.2157 *

* left unchanged.
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For the purpose of demonstration we have chosen the reciprocals of those
inflated VIF’s and two multiples of the same to obtain a factor, say ¢ =.v",
(the reciprocal of the jth VIF) component to reduce the VIF of the corresponding
component of the partially shrunken estimator ¢;b; to 1. Similarly, using ¢? =
5fv; and ¢’ =10/v; will reduce the associated inflation of 4; to 5 and 10,
respectively. These resultant shrinkage factors are simply scalar multiples of the
¢;’s, namely V5 ¢; and V10 ¢; .The Tables provide the vectors of the three
partially shrunken estimators of the coefficients of regression for the two
models. In general, the partially shrunken estimators for the two data sets can
be given as Cb with

C = m diag (5.0951, 1.7241, 0.3300, -0.4970)
and

C = m diag (-0.5837, 0.7217, 1, 1.0169, 10),

where m € [1, V'10] is stochastic. In this paper only three possible m-values
that gave rise to three shrunken estimators have been considered. Nonetheless,
since m is random a simulation study can be conducted to generate as many
partially shrunken estimators as needed.

Note that in Table 2 the two columns marked with asterisk are those where
multiplication of the VIF’s is not necessary. This means the third and fifth
components remain unchanged. V

Evidently we also observed that both total shrinkage and partial shrinkage do
not bring about any change on the arithmetic signs of the components of the
shrunken estimator. Nonetheless, partial shrinkage is a strategy that aims at
reducing the inflated vir’s. This is achieved by appropriate choices of
multipliers that will have distinct effects on the magnitude of the corresponding
estimator component.

SUMMARY

The paper justifies the need for shrinkage of only those components of the
standard estimator of the regression coefficients with large VIF’s in the sense
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discussed in the sections above. Obviously the amount by which we shrink a
component introduces bias that is tolerable as long as the resulting VIF is within
the permitted interval. Those component estimators that are left unaltered have
acceptable variance and they are still unbiased. The idea of partial shrinkage is
similar to that of estimation of a sub-vector.
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