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ABSTRACT: The Pitman Measure of Nearness criterion is applied to compare
the performance of the ordinary least square estimator and the shrunken
estimator. This is done by considering.the weighted and the unweighted norms
of both estimators, The corresponding Pitman Nearness probabilities are
provided. An adaptive procedure for obtaining operational shrinkage factors is
suggested.
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INTRODUCTION

Since Rao’s work (1981) a large number of research publications on Pitman
Measure of Nearness (PMN) has. appeared. PMN was introduced by Pitman
(1937), and until the beginning of the seventies his ideas did not attract the
attention of researchers, partly due to the fact that many felt comfortable with
the criterion of Mean Squared Error (MSE). Dyer and Keating (1983), Keating
and Gupta (1984), Keating (1985), Keating and Mason (1985a; 1985b) and Rao
et al. (1986) are but among those prominent researchers who contributed much
to the popularisation of PMN. The monograph by Keating et al. (1993) provides
an illuminating account of PMN and a long list of publications on comparisons
of estimators of univariate parameters and scalar functions of the same.

This paper provides theoretical results of comparison of the unbiased estimator
of the regression coefficients of the multiple linear regression model and the
shrunken estimator (Mayer and Willke, 1973). At this juncture we would like
to refer the readership to a related work by Conerly and Hardin (1991).
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Before proceeding with the technical discussion let us introduce the following
definitions.

Suppose T, and T, are two estimators of the parametric function 7(f),
6EOCR*. The Pitman Measure of Nearness of T, relative to T, is the
probability

PNy(T,,Ty) = P[L(T, - 7(6)) < L(T; - 7(6))]

where L(, ) is a convex loss function of the form (T; - 7(6)) "W(T; - 7(6)) with
symmetric weight matrix W.

Accordingly, we define the Pitman Nearness of T, to 7(6) relative to T, as
follows:

Suppose T, and T, are two estimators of the parametric function 7(6). Then T,
is said to Pitman-Nearer to 7(0) relative to T, if

PNy(T,, T;; W) = P[(T,-7(8)) "'W(T,-7(6)) < (T-7(8)) ' W(T,-7(6))] = 0.5

for all 6 € © with strict inequality for at least one 4.

COMPARISON OF THE SHRUNKEN AND UNBIASED ESTIMATORS

Consider the multiple linear regression model M{y, X8, o’L,} where y = (y,,
..., Yo) * is a vector of observations, 8 = (8,, ..., 8,) " is an unknown but fixed
p-vector of regression coefficients, X is a nxp non-stochastic regressor matrix
of full column rank and o®> > 0 is the unknown constant variance of the error
terms. Furthermore, we assume that the vector of dependent variables y ~
N(XB, o’1,).

The ordinary least squares estimator (OLSE) of 8 is givenby b = (X"X)'X"y.
It is also the maximum likelihood estimator under normality. In both situations
it is best linear unbiased in the class of linear homogenous estimators of 8. In
the presence of two or more near-collinear columns of X, however, b does not
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perform well in terms of mean error squared risk. Under such circumstances the
use of biased linear homogenous estimators is appealing. One such estimator,
the shrunken estimator (Mayer and Willke, 1973) is simply a scalar multiple,
in fact a shrinkage, of b with a shrinkage factor ¢ € (0, 1).

In this section we compare performance of b and cb through PMN. The weight
matrices we consider are the identity matrix of dimension p and the inverse of
the dispersion matrix of b. Apparently the former introduces no weights, and
therefore it compares the Euclidean norm of cb and b, while the latter utilises
the Mahalanobis metric.

I. Weight matrix (the inverse variance-covariance matrix of b): ¢ *X ‘X
The following equivalence holds for the above choice:

(cb-B)” X°X (cb-B) < (b-8)" X°X (b-)
&b’ X°Xb-2(1+c)' 8 X°X8 > 0
Sb-(1+0)" 8)° X°X (b-(1+¢)* ) > (1+0)? 8°X"X8.

Therefore, denoting XX by W, we obtain
PNy(ch,b;W,) = P[(b-(1+c)'8)" X" X(b-(1+¢)' 8) > (1+c)? 87X X8].

Since
(X“X)* (b-(1+¢)" B) ~ Nc(1+¢)* (X"X)* 8, o’1)

it follows that Q°y = 02 Qw ~ X2(p, %), where Qy, = (b-(1+¢)* 8)'X"X
(b-(1+¢)" B) and the non-centrality parameter y = ¢ ¢ (1+¢)? 8°X°X8.

Thus, the PMN probability of cb relative to b is

PN; (cb, b; W) = P[Q°y > 0 (1+¢)? 87X X8I
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II. The Euclidean Norm :
Comparison of the squared unweighted norms of cb and the OLSE b yields

(cb-B)“(cb-B) < (b-B)"(b-B)

& ¢ b-2chb’8 < b’b-2b"8

©b°b-2(1+¢)" b8 > 0

Sb-(1+c)" ) b-(1+0)" §) > (1+0)* B°8.

Note that the vector b-(1+¢)' 8 ~ Nc(1+¢)'8, o*(X"X)"), and that its "
components are not independent unless X *X is diagonal. In general, therefore,
the distribution of the inner product of this vector, namely Q, = (b-(1+c¢)*
B8)°(b-(1+¢)" B) is not a non-central x* distribution. In fact, it can be shown
that Q, is a weighted sum of p independent, single degree of freedom, non-
central x* random variables. If we decompose the matrix (X“X)' into VL'V~
where V contains its orthonormal eigenvectors and L is the diagonal matrix of
the corresponding eigenvalues I;, j = I, ..., p, then V' (b-(1+¢)* 8) ~ N,
o* L"), with p = ¢(1+¢)'V’ 8. Consequently,

Q = b-(1+0)" B)"(b-(1+0)' B) = £Z}

where Z; ~ N(g, ¢/ [)) so that Z? ~ o°/[; x* (1, [; w?/0®). Therefore,
Q = L' R,

where R, ~ x*(1, [, p/o%). Thus, we get
PN; (cb, b; W, = I) = P[Q", > 878/d° (1+¢)],

where Q°, = Q/o°.

We can also very easily compare two shrunken estimators ¢,b and c¢,b,

¢, <c,, by applying either of the above norms. For the purpose of demon-
stration let us use the Euclidean.norm. Observe that

(¢ib-B)” (cb-B) < (c:b-B)"(c:b-B)
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Sb-(c; + &) B) b-(c, + )" B) > (¢, + &)* BB

Since b-(c, + ¢)' B ~ N((c, + ¢, - 1) (¢c; + ¢)'B, *(X X)) the vector
Vb - (¢, + ¢)' B) ~ N(¢, & L"). The inner product of (b-(c, + ¢)' 8)
can be represented as a sum

(b-(c, + )" B)"(b-(c, + ¢ B) = EA?,

where A; ~ N, /1), with § = (¢, + ¢, - 1) (¢, + ¢)'P* 8. Note that
A? ~ @/l x*(1, 1; §71d°). Therefore, EA;? can be expressed as

F = o® ZI'H,,
with H; ~ x*(1, 1,£%/6%). Thus, the PMN of ¢,b relative to c,b is
PNy(c,b, c,b) = P[D > 8°8/d° (c, + ¢,

where D = F /¢

OPERATIONAL SHRINKAGE FACTORS

The discussion in the previous section gives theoretical conditions under which
the PMN could be used to compare the shrunken regression estimator with the
standard unbiased estimator. Those conditions depend on unknown parameters
of the model through the non-centrality parameter and the shrinkage factor.

For application purposes we may be interested in a set of values of the
shrinkage factors which guarantee PMN dominance of either of the estimators.
Operational shrinkage factors would be obtained if appropriate estimators could
be used to replace the non-centrality parameter. Because there are no analytical
methods that lend themselves for the derivation of parametric functions like the
ones that appear as non-centrality parameters, which are non-linear in § and o°,
we opt to use plug-in strategies in order to get operational substitutes for these.
The plug-in strategy is a straightforward method that relies on direct substitu-
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tions of estimators for their respective parameters. Direct substitution, however,
cannot always promise good estimators.

In order to arrive at improved estimators for the non-centrality parameters we
can go for a further change of the resultant adaptive estimators of the non-
centrality parameters by modifying the deterministic parts of that estimator
which is obtained from a direct plug-in.

Referring to case I above a direct substitution of b for 8, and the unbiased
estimator or maximum likelihood estimator for o in ¢ = 8°X"Xg8/a? gives the

estimator @ = b“X“Xb/s’. By the same analogy estimators for the signal ¢ =
B8°B from a class of b°Q(X)b, where 2(X) is a weight matrix depending only
on the regression matrix, can be obtained (see Gnot et al., 1995).

To obtain the operational shrinkage factors for the two cases considered in the
preceding section we demand that:

PNy(cb, b; W)) = Plc 2 (1+¢) Vy > $1 2 0.5

as well as
PN(cb, b; W) = P[c® (1+¢)* V5 > €] 2 0.5

where V', and V|, respectively, are x*(p, i) and x*(p, ¢) distributed
random variables. The estimated degrees of freedom 1| and ¢ are § = ¢

(1+¢)? p and ¢ = (1+0)? E.

In either case the minimum value of the operational factor is obtained when
tiie PMN probability is exactly one-half. All values between such a minimum
and 1 favour the shrunken estimator in terms of PMN and vice versa. In
opting for such an adaptive procedure we are fully aware of the fact that the
lower bound of the operational steering factor depends on the choices of
estimators for ¢ and £.
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SUMMARY

In this paper PMN performance comparison of a biased linear homogenous
estimator of the regression vector, namely the shrunken estimator, and the OLSE
was discussed. As an anonymous referee pointed out the comparison involving
weights, with the inverse of the variance-covariance matrix as weight matrix,
is the natural and useful one. On the other hand the inclusion of the result of
PMN comparison based on unweighted squared norm is interesting theoretically,
and it makes the undertaking holistic.

The section dealing with determination of operational adaptive shrinkage factors
by way of using plug-in is only suggestive of what one could do under
circumstances when practical ad-hoc solutions would be necessary. We
recognise that the resultant factors are stochastic, and, as a consequence
statisticians may have their differences on whether such a non-deterministic
factor is acceptable. Nonetheless, such adaptive steering factors obtained
through plug-in could be practically useful. In connection with this issue we
would like to address the work of Conerly and Hardin (1991) where determin-
istic shrinkage factors are suggested. The special issue of Communications in
Statistics (Volume 20, Number 11) consists of a wide variety of latest research
on Pitman Measure of Nearness, and the author would like to mention that this
special issue was the motivation for the present undertaking. The present work
complements those works related to PMN comparisons of regression estimators.
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