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ABSTRACT: In this note, we consider finite non-abelian p-groups (p=3) in
which the derived group is cyclic. As far as we know, these groups have not yet
been classified. This will be done in a forthcoming paper.

The notation and terminology employed will be as follows. If G is a p-group,
G' stands for the derived group of G. A subgroup of G is of type (p,p) if it is
elementary abelian of order p* G is said to be regular if for every pair of
elements a, b in G,

(ab)’=a’b"c?,

Where c is an element of the derived group of the subgroup generated by a and
b. [a, b]=a'b" ab as usual, for a, b in G. For positive integers m and n,m|n
means m divides n. Given a real number r, i(r) is the integer parts of r. If M
and N are isomorphic groups, we write M=N. M, (n=1) is the n® term of the

descending central series of M. Z is the set of rational integers.

We use the following elementary but basic fact. If G is a finite nilpotent group,
every normal subgroup of G different from the identity subgroup, {1},

intersects the centre Z(G) of G non trivially.

We need the following lemmas.
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Lemma 1
Let a, b be pair of elements of a group G.

a) If [a,b} commutes with a, then for all n€ Z,
[a°,b]=[a,b]".

b) If [a,b] commutes with a and b, then for all positive integers n,

{(ab)*=a™b" [b,a](;)

where (g) is the binomial coefficient n(nz—l) .
Proof

(@) We proceed by induction on n> 0 since [a%,b]=[1,b]=1=][a,b]’. For
n=1, there is nothing to prove. Suppose n> 1 and the assertion true for
n-1. Then,

[a",b]=[aa™,b]=a"*" [a,b]a™" [a*',b]=[a,b] [a™',b]=][a,b] [a,b]*'=[a,b]".

Furthermore,
1=[a"a™,b]=a"[a",b]a"[a™,b]=a"[a,b]"a™[a™,b] =[a,b]"[a™,b], hence
[a®,b]=[a,b]™.

) For n = 1, the assertion is trivial since % 0 by convention.

Suppose n > 1 and the assertion true for n-1. Then,

(n-l) (n—l)

(@) = @b)*lab=a™'b*'[ba]' ? 'ab=a™'b"'ab[b,a] ?

“{a-1 (n-l)
= g" g "“‘b""")a"b""ab[b,a]( 2 )=a"b""[b"",a]b[b,a] 2
n-1

= a"b""‘[b,a]"”‘b[b,a]( 2 )=a"b"[b,a](;)
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Lemma 2

Let M and N be normal subgroups of a p-group G such that NCM and
|MIN| =p™. Then, for all integers k satisfying 0 < k < m, there exists a
normal subgroup R of G such that NCRCM and |R/N| =p*.

Proof

Consider the normal series {1} CNCMCG. This can be refined into a series
of normal subgroups of G (Huppert, 1967, 1,11.7) in such a way that the factor
group of any two consecutive members of this series of normal subgroups is of
order p. Hence, R can be chosen among the members of this series such

that | R/N| =p*.

Lemma 3

Let p be an odd prime and N a normal non-cyclic subgroup of a p-group G.
Then, N contains a normal subgroup A of G of type (p,p).

Proof

We proceed by induction on |G|, i.e., we suppose the lemma true for all p-

groups of order less than |G| and prove that it remains true for G. If |G| =p?,
then G=N=A.

Suppose | G| >p> By virtue of Lemma 2, N contains a normal subgroup L of
G such that |L| =p. Consider G/L.

If N/L is cyclic, then N is abelian since L CZ(G). Since N is not cyclic, we
have m(N)=2, where m(N) denotes the minimal number of generators of N.
A= <xEN | xP=1> is a characteristics subgroup of N of type (p,p). Since
N is normal in G, A is normal in G as a characteristics subgroup of a normal
subgroups of G.

Suppose now N/L non-cyclic. Since the order of G/L is less than |G|, by the
inductive hypothesis there exists a normal subgroup M of G such that LCMCN
and M/L is of type (p,p). we have |M|=p®. If M is of exponent p, by virtue
of Lemma 2, there exists a normal subgroup A of G of type (p,p). Suppose then
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M is of exponent greater than p. If M is abelian, we are done. Suppose M non-
abelian. It is well known that |M/M’| =2 p? (Huppert, 1967, II1,7.1), hence
[M’| =p since p*=|M| =(M:M') |M’| . Wehave also M' CZ(M), because M’
is characteristic in M. By Lemma 1(b), for all x,y €M,

xyy = x"y"[v,x](g),

r
and since p is odd, we have [y,x](z) = |, Hence,

xyy =xy.

Consequently a~ a* is an endomorphism, say f, of M. Since M is an exponent
greater than p, we have f(M) # {1}. From M/M’ is of type (p,p) it follows that

f(M)CM’, hence |f(M)| =p. Ker (f)=A is then of order p? and in fact of type
(@,p). Since A = <XEM | XP=1> is characteristic in the normal subgroup
M of G, A is normal in G.

Theorem 1
Let p be an odd prime and G a non-abelian p-group of order p* in which G’ is

cyclic. Then P"(’i)‘1 divides |G/G'] .

Proof

We carry out the proof by contradiction. Let G be a counterexample of minimal
order. That is, the conclusion of the theorem holds for all p-groups of order less

than |G| but it does not hold for G. Then Pl(’) divides |G/G’|, and since
G’, is cyclic, every subgroup of G’ is normal in G. Let A be the subgroup of
G’ of order p. Then A is normal in G and ACZ(G). Let 5: G—~G/A be the
natural homomorphism. s(G')=(s(G))’ is a cyclic group and |s(G)| < |G]|.

v

L n-l R
Hence, P( ) divides |s(G)/s(G")|. But s(G)/s(G") = GIG/ , s0
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n-1 "
P'(T "Neig|.

If n=2m+1, then "(-;'-) =i(m+%)=m,i(5_;l)=m, hence }D'(’;)‘l | G/G’| and

we get a contradiction.
Ifn=2m, then i (';) =m, i(_’}_z‘_l_) =i(m—%) =m-1and p~| G/G' |, p™** does not

divide |G/G’ |, hence |G/G’|=p"‘=p’ and |G/|=p™.

Set A= <a>. We have a€Z(G). Let M be a normal subgroup of G of type
(p,p). M exists by virtue of Lemma 3. We have M#G' and G'¢M.

Consequently, G/M is not abelian, |G/M|=P>- and, by the choice of G,
p™[(G/MY | . But (G/M)' = G'M/M=G'/G’'\M and G'/G' N\ M is cyclic as
a factor group of a cyclic group. Hence, by comparing orders, we get
MNG’'={1}. It follows that MCZ(G). Let x€EM-{1}.Then N = <x, a>>
is of type (p,p) and normal in G since NCZ(G). This shows that we again get
a contradiction because a€G’ and NNG’ # {1}. The proof is complete.

The bound as stated in Theorem 1 is the best possible. Indeed, there are non-
abelian p-groups (p =3) of order p" such that |G/G’| is equal to p'(’i)d.

If n=2m+1, then take G=<x,y:y? " =x"""=1,y " xy=x'"? > . We obtain

n +1
|GIG/ | =P =p'(1) .
When n==2m, consider G= <x,y;yl"‘" =xP" = l’y‘lxy =x1+#*> . In this case,
weget |G/|=| <x?'>|=P and |G/G'| =P _plh,

The case of 2-groups is completely different from that of p-groups where p is
odd as shown by the following result.
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Theorem 2
For any integers m and n satisfying 2 <n<m, there exists a group G such that
[G|=2", |GIG'| =2, G’ is cyclic.

Proof

Let M be any abelian group of order 2" and let N denote the dihedral group
of order 2”2 . Let G be the direct product of M and N. Then |G|=2",
G’ =N’ is cyclic of order 2™ and |G/G'| =2".

Theorem 3
The group in Theorem 1 is regular.

Proof

Let H= <a,b> be a subgroup of G, where a and b do not commute; this is
possible, since G is non-abelian. H'CG’ and G’ is cyclic imply that H' is
cyclic. Let H' = <c¢>. Then {1}CH,CH’ with H,#H’ and consequently
H,;C <c?>. We can now apply Lemma 1(b) to H/H,: there exists

d&€H,C <c’> such that

(aby =a?b? [b,a](;)d.

14

Since p=3, (}2’) is a multiple of p. Hence [b,a](Z)d =c™. The proof of
Theorem 3 is complete.
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