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ABSTRACT: In this paper we study the asymptotic behaviour of functions extremal
for the well known inequality introduced by Edrei-Fuchs (called the Ellipse Theorem)
by considering a normal family of 8-subharmonic functions. This approach allows us
to describe precisely the prototype of all functions extremal for the Edrei-Fuchs ellipse
theorem. Indeed, it turns out that the functions which are extremal for the Edrei-Fuchs
inequality are also extremal for the inequality introduced by Essén-Rossi-Shea.
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INTRODUCTION
Let f be a meromorphic function in the complex plane C of lower order 4, 0 <A <1,

We assume the reader is familiar with the notations T(r,f), N(r.,f), 8(x,f) involved in
the theory of Nevanlinna. We set:

a=1-40,), b=1- 8(,f).
The Edrei-Fuchs Ellipse Theorem (Edrei et al., 1960) states that

a® + b? - 2ab cosAT > sin’AT. 1)
Furthermore ascosAn implies b =1 and b < cosAn implies a= 1.
Besides (Edrei et al., 1960) proofs for (1) are given in Edrei (1969) and in (Hayman,
1989, Ch. 9) using the spread theorem due to Baernstein (1973). In addition, the

behaviour of the extremal functions, i.e., one for which equality holds in (1) has been
discussed by Edrei (1969). In this paper we give a proof of (1) and also describe the
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behaviour of the extremal functions using a “normal family” of §-subharmonic
functions (functions representable as a difference of subharmonic functions) in the
sense of Anderson and Baemstein (1978). The approach has also been used to
describe the asymptotic behaviour of a certain class of extremal functions, such as the
well known inequality, Paley inequality (Hayman, 1989, Ch. 9).

Let u =y, - u, be a 8-subharmonic function in the complex plane, where u; (i= 1,2) is
a subharmonic function. If u = log|f|, f meromorphic, then u is a 8-subharmonic
function. Any u € C? (C) is 8-subharmonic (Arsove, 1953). We write

2n
N(ru) = —2l1t" f u(re®dd  (0<r<=), u*=max(u.0)
0

and define the Nevanlinna characteristic of u by

I(r) =T(r,u) =N(r,u *) + N(r,u,).
Clearly, T(r,u) depends on the particular decomposition u, - u, as well as on u, but one
can ignore such an ambiguity, for discussion see (Hayman, 1989, Ch. 9).

The lower order A of u is defined by

1= liminf logT'(r)
F=logr

and the Nevanlinna deficiency of u

& (o, 1) _liminf M(r,u*) _ l_liminf N(r,u,)
e ) P T(rnu)

Throughout this paper we shall write

a=1-06(0, u), where & (0, u) =9 (=, -u)
b=1-8(=,u). ?)

Clearly 0O< 1< a, b<l.
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STATEMENT OF RESULTS

A sequence {r,} of positive numbers is a sequence of Polya peaks for T(r,u) of order
A, 0 < A <o, if there is a sequence {€,}, €,>0, suchthatas n-», €,k -~ 0 and
€,r, -~ ~andsuchthat €,r, <t<r/e, implies

A
T(tu) < (1+€) [ri] T(r,, u).

If A is finite T(r,u) has a sequence of Polya peaks of order A (for a proof see (Edrei,
1965)). Let us state a special case of the “normal family” theorem due to Baernstein
(1973).

Theorem A

Letu=u, -u,be a d-subharmonic function of lower order A, 0 < A <, and let {r,}
be a sequence of Pdlya peaks for T(r,u) of order . Foreachn=1,2,3 ... let

~ u(r,z) 12
u,(2) = To, %) =u,(2)-u,(2)  (zeC) ©))
h i _ u'(r”z) ._l 2
where u"(Z) —Trn,u—) (1" s ).

Then there is a 8-subharmonic function v= v, - v, in Cand a subsequence I = (n,)
of positive integers such that (as n—e, nel ) the following holds:

D ™ Mely,-v])=0 (0<r<e),
b) nlif; T(r,u,) =T(r,v)<rt (0<r<«),
) nhfl, N(r,u)) =N(r,v,) < (1 -3(0,u))r* (0<r<w),

O ™ NaD=NE) A -Beurt (0<r<e),
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We notice from (3) and (b) that T(L,v) = 1. Since a subsequence of {r,} is a sequence
of Pélya peaks for T(r,u), we consider the class of all 8 -subharmonic functions v=v,-
v, such that for some subsequence of {1, } assertions (a) to (d) of Theorem A hold.
We denote this class by S(u,{r,}). We also write|E| for the Lebesgue measure of the
set E.

We shall prove

Theorem 1

Letu=1u, - u; be a O -subharmonic function of lower order A, 0 <A <1, and {r,} a
sequence of Polya peaks for T(r,u) of order A. Then

@) a?+b?-2ab cosAn > sin’Am.

Furthermore a < cosAn impliesb=1 and b < cosAn implies a =1, where a and b are
defined in (2).

(ii) Let h be any nonnegative function defined for r > 0 and satisfying h(r) = 0-
(logr) as r~« and consider the sequence:

Bn=[}"(h)=-;-|{6 e[-malu(re®)>hr )| (=123,.) @)

If equality holds in (i) witha <1 and b <1, then

-n-ooo

, Jlim g 1 n
@) P=yon Bmges®),  (O0<ps)

and we have b = cosAP and a = cosA(T - B).
Furthermore for each v = v, - v, € S(u,{r,}) we have
()  T@v)=r N(,v,)=ar’,N(r,v,) =br*, and

)  v(re™®) = mArtsinA(B-|0-a|) for some ae[-n,n]and [0 - & < .
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All the assertions of Theorem 1 except part (c’) are well known for u = log Ifl, where
f is a meromorphic function (see Theorem 1, Edrei, 1969). However, the Ellipse
Theorem, that is assertion (i) of Theorem 1 is already known for & -subharmonic
function. Thus Theorem 1, apart from generalising Edrei's result to arbitrary
8 -subharmonic functions it describes precisely the functions which are extremal for
the Ellipse inequality. The function v in (¢’ ) of Theorem 1 is a8 -subharmonic
function (usually called a harmonic spline (see Hayman, 1989, p. 739) extremal for
(). Indeed the function v in (c’) is a typical example extremal for the inequality
introduced by Essén, Rossi and Shea (see Theorem 1, Essén et al, 1992). Thus, in
some sense the functions extremal for (i) of Theorem 1 are also extremal for the
inequality of Essen-Rossi-Shea (Theorem 1, Essén et al, 1992). Also Theorem A (a)
and Theorem 1 (¢') imply that there is a subsequence I = {n,} of positive integers and
areal ae[-w, 7] (depending on v) such that for almost all z(z = re ),

u,(re®) - v(re®) asn-o, nel.

SOME FACTS
One of our main tools to prove Theorem 1 is the *-function introduced by Baernstein

(1974). Letu=u, -w, be a O -subharmonic function in C, The *-function of u,
denoted by u*, is defined

u(re® = 1 supf u(re ®)dd + N(r,u,) (0<B<m, r>0)
2n E

where the supremum is taken over all sets E < [-n, n] with |E| =26. In (Bernstien,
1974) it is proved that u* is subharmonic in the upper half plane, #* and continuous
in the closure of 1" except possibly at z=0. Also in (Baernstein, 1974) it is proved
that for eachr> 0 and 0 < © <w there is a set Ac[-w, n] with |A| = 260 such that

0
| E‘Tuf 20 fEu(re ®)dp = fAu(re D) = :{; ii (re ®)d¢,



208 Seid Mohanimed

where 0-ii(re®) is a symmetric decreasing rearrangement of u(re®) on [-,x].

Further properties of u* (see also Hayman, 1989, Ch. 9) needed here:
T(r,u)="g" u " (re®), u (") =N(r, u), u *(-r) =N(r,y), )

Bru)= 3P utz) =n5%u "re®)|, =0.

Proof of Theorem 1
Lemma 1

Letu=u, -u, be a &-subharmonic function of lower order A, 0 <A <= and let {r,}
be a sequence of Pdlya peaks for T(r,u) of order A. If B is any accumulation point
of {B .}, where B , is defined in (4), then there is a 8-subharmonic function v=v, -
v, € s(u, {r,})such that v*(c®) =1, Conversely if v=v, - v, € s(u,{r,}) then v*(c¥)
=] for some accumulation point B of {{,}.

Proof
Consider the & -subharmonic function

h(r,)

0y 2y L0y 10Y [y 2(5p 0
w(re®)=u, (re”) -u,(re )+T(r,,,u)

1 n=1,2,3,...)

=1l 0 2.0
=w, (re")-w,(re®),

where u,(i=1,2) is defined in (3), h s as in Theorem 1, and w,,l =u,,l

2 h(@)

It is easy to check that for each v=v, - v, S(u, {r,}) there is a subsequence of {w,}
such that all assertions of Theorem A hold with w, instead of u,. Let p be any
accumulation point of {B,}. Assume p,~B. Let v=v, - v,€ S(u, {r,}). Then there
is subsequence I = {n,} of positive integers such that the function v and the
subsequence {w,}, nel, satisfy all assertions of Theorem A. The definition of i
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andw, showsthat w'(e™)=1 foralln. LetA, < [-%, %] with |A,| =2 B, and
such that

=51; [, e + (1, w)).

Now applying Theorem A we obtain

n

1=2—1n- fAnv(e"e)dB + N(1,v)+o(1)  (n-=, nel)
sv*(eiﬁ”)+ o(1) (n-e, nel)

The continuity of v* implies 1 < v*(e®). Since v*(e®) < T(1, v) =1 we conclude
that v*(e®) = 1. The converse is similarly proved.

Lemma 2
Letu=u, -u, be a d-subharmonic function of lower order A, 0 <A <1, and {r,} a
sequence of Polya peaks of order A for T(r,u). If p is any accumulation point of {f,}
where B, is defined in (4) of Thereom 1, then

SinAm < asinAf} + bsinA(w-B) )

where the numbers a and b are defined in (2).

Proof
Let I={n,} be a sequence of positive integers such that

lm =B, (ned.

Lemma 1 shows that for any v =v, - v,& S(r, {r,}),n €I, v¥(®)=1. Put

5(6)-LOAAE0) (95, 0<a<), @
sin.

and define
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w(re ®)=v *(re %) -r15(6) (0<0<m, r>0).

The function w is subharmonic on the upper half plane, n*. Using Theorem A and (5)
we obtain w(r) < 0, w(-r) < 0 and w(re ®) < r*. Since An<) we conclude by
Phragmén-Lindelsf principle that w(re ®) < 0 Thus

vi(re®<rtS(@)  (0<B<m, r>0). ®)
The Lemma is now proved by settingr = 1 and 6 = in (8).
We proceed to prove Theorem 1. Using Cauchy - Schwarz inequality (6) implies

SinATt<(a-bcosAT)sinAP + bsinAm cosAp 9
s|(@-beosAm)? + b2%sinAn]"?
= [a?+b%-2abcoshn]"”.

This proves assertion (i) of Theorem 1. For the proof of the implications or a<cosAmn
or b<cosABn and assertion ii (a") of Theorem 1 see section 5 and 6 of Theorem 1
(Edrei, 1969).

Proof of assertions ii (b') and ii (¢') of Theorem 1

The assumptions a < 1 and b < 1 together with Lemma 2 imply B#0, n, where P is
any accumulation point of {f,,} defined in (4). The hypotheses that equality holds in
(i) of Theorem 1 implies equality in (9) and hence in (6). Thus v*(e®) =1 = S(B), for
any v € S(y, {r,}). Since 0<f<n, the maximum principle for subharmonic function
and (8) imply

vi(re®=r*s(®) (0 < 0 < m). (10)
Consequently v* is harmonic in n* and by (4) we have

N(r,v))=v*(re™=art, N(r,v,)=v"(r)=br* and T(r,v)= r. (11)

This proves assertion ii (b") of Theorem 1. The relations in (11) allow us to define
v,(0) = 0 = v,(0). We proceed to find the extremal functions. We prove Lemma 3.
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Lemma 3

Let u =1y, - u, be a & -subharmonic function in C of order A, 0<A<1 and wu, (0)=0
=u, (0). if u* is harmonic in the upper half plane then

u(z) = flog|1+ze |dn (1) - flog|1— |a’n2(t) (12)

for some ae [-m,x], where n(f)=p(|z| < ) and p, is the Riesz measure of
u, (i =1,2).

Proof

Since 0 < A < 1 we have the representation
= -z - _Z
u(Z)-fclogl ] Cldul(C) fclogl 1 7 [du,(0). 13)
Consider the d-subharmonic function

w@)= [ Jogl 1+ |y (©) (14)

=w,(2) - w,y(2).

21 (©)~f Jogl1 -2

It is easy to check that w* is harmonic in w*and that N(r,u;) = N(r,w), (i=1,2). Thus
using (4) and the Phragmén-Lindelof principle, An<n we conclude that w*(re®®) =
u*(re®), 0 < 6 < w, 1>0). Again by (4) and (14) we have B(r,u) = B(r,w) = w(r). Let
B(r,u) =u(re™) for some ac [-n,n]. Now the Lemma follows using (12), (13)
together with u(re ) = w(r).

To proveii (c') of Theorem 1, we let v=v -v, € S(u, {r }), where u is extremal for
() of Theorem 1. Then by (10) v satisfies the hypotheses of Lemma 3. From Jensen’s
formula and (11) we have n(f)=art* and ny(f) =bAt*. Thus using (12) and
applying the residue theorem of calculus yields assertion ii (¢’).
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