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Abstract: Climate change poses significant challenges for rural households, particularly in farming communities, 

leading to crop loss and reduced incomes that threaten livelihoods. This study analyzed resilience capacity of rural 

households to climate change, the case of Gubalafto distracts, Ethiopia. Moreover, the study examined the effect of 

agroecological differences on the households' resilience level. The study utilized a survey research design, in which 

gathering data from 355 households selected through random surveys. Principal component analysis, analysis of 

covariance, and descriptive statistics were employed to analyze the data. This study presents an estimation of the 

overall household resilience capacity, derived from three key dimensions of resilience: absorptive, adaptive, and 

transformative capacities. The analysis revealed significant loadings for these dimensions, with values of 0.612, 

0.534, and 0.583, respectively, indicating their importance in building resilience capacity. Moreover, findings 

reveal that 44% of households were found to be have a low resilience capacity index (RCI), while 37% and 19% 

were a medium, high, with an overall mean RCI of 0.33. Surprisingly, lowland households demonstrated a higher 

average climate resilience score compared to midland and highland households, with p-values of 0.02 and 0.001, 

respectively. However, no significant difference was found between midland and highland households. Relevant 

institutions should prioritize investments in communication infrastructure, institutional services, and social safety 

nets. Particular emphasis should be given due emphasis to highland and midland agro-ecological zones, where 

targeted support is essential for strengthening household resilience capacities. 
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1. Introduction 

Climate change has emerged as a formidable 

development constraint, with far-reaching impacts on 

ecosystems, agricultural systems, and vulnerable 

communities. It leads to erratic rainfall, soil 

degradation, pest outbreaks, and extreme weather 

events including floods, droughts, and heat waves 

which collectively undermine food production and 

weaken rural resilience (Fadairo et al., 2020; IPCC, 

2021). These climatic disruptions are particularly 

severe in developing regions, where rural populations 

depend heavily on rain-fed agriculture. In such 

contexts, agricultural yield reductions and livelihood 

instability exacerbate poverty, food insecurity, 
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diminished adaptive capacity, and social vulnerability 

security (Harvey et al., 2018; Shi et al., 2022). 

Although Africa has contributed minimally to global 

greenhouse gas emissions, the continent has suffered 

significant loss and damage across key development 

sectors due to human-induced climate change. Rural 

farmers, in particular, are among the hardest hit, 

facing severe threats to both food and livelihood 

security (Ayugi et al., 2022; Harvey et al., 2018). 

According to Jiri et al. (2022), prolonged droughts, 

flooding, and unpredictable rainfall patterns severely 

weaken farmers' resilience capacity Hence, 

addressing these challenges requires integrated 

development interventions that enhance climate 

resilience, safeguard food systems, and empower 

rural communities.  

Ethiopia, the second most populous country in 

Africa, has a diverse climate with varying rainfall 

patterns (Koo et al., 2019). The agricultural sector, 

which is crucial for the livelihoods of rural 

communities, is significantly impacted by climate 

change (Belay et al., 2017). The country has a 

history of drought, experiencing an increase in 

extreme weather events, including the 

meteorological droughts of the 1970s and the 

2015/2016 El Niño, which caused crop failures, 

acute food shortages, and weakened household 

resilience (Kosmowski, 2018; Green, 2019; Bahta 

and  Myeki, 2022). This situation weakens 

households' ability to cope and resilience capacity 

to climate change (WFP and  CSSA, 2022). This 

makes the country susceptible to challenges 

including drought, flood, and land degradation, 

which impede its ability to respond effectively to 

climate-related threats (Mekonnen et al., 2021). In 

brief, climate change poses escalating threats to 

rural livelihoods and food security, particularly in 

Ethiopia, where limited adaptive capacity that 

underscores the urgent need for resilience-focused 

development.  

As a result, the concept of resilience has emerged as a 

plausible framework for improving the capacity to 

withstand shocks and stressors (Frankenberger and  

Nelson, 2013). The United Nations Office for 

Disaster Risk Reduction (UNDRR) defines resilience 

as the capacity of a system, community, or society 

facing hazards to effectively and promptly resist, 

absorb, adapt to, and recover from their impacts 

(Nguyen and  Akerkar, 2020). In practical terms, 

resilience often refers to the ability of socioecological 

systems to respond to and adapt to new conditions, 

particularly in the context of climate change. Studies 

emphasize a socioecological perspective, which not 

only values the ability to withstand disturbance but 

also encourages adaptation and transformation 

(Walker and  Salt, 2012). This approach, known as 

resilience thinking, focuses on three key aspects of 

socioecological systems: resilience as persistence, 

adaptability, and transformability. According to Jiri 

et al. (2022), resilience is built through the 

development of diverse adaptive capacities, enabling 

farmers to withstand the uncertainties of a rapidly 

changing climate. In the 3-D Resilience Framework, 

Bene et al. (2012), propose that resilience emerges as 

the result of three capacities: absorptive, adaptive and 

transformative capacities. Each capacity leads to a 

different outcome: persistence, incremental 

adjustment, or transformational responses. The 

framework is the fact that resilience emerges as the 

result, not of one but all of these three capacities: 

absorptive, adaptive, and transformative capacities. 

As noted by Oxfam (2017), absorptive capacity is the 

ability to take deliberate protective measures and to 

withstand known shocks and stress. Conversely, 

adaptive capacity demonstrates the actions taken by 

households to withstand shocks during climate stress, 

while transformative capacity is the ability of a social 

system to foresee, absorb, and adopt to climate 

extremes and disasters by adapting transformative 

policies that alter the institutional rules of the game 

(Béné et al., 2014). 

Households across agroecological zones face distinct 

climate risks and soil conditions that shape their 

resilience. Highland areas benefit from better rainfall 

and fertility but suffer erosion, while lowlands endure 

drought and heat stress. These differences directly 

influence resilience outcomes, including food 

security, income stability, and recovery capacity 

(Aboye et al., 2023). A study conducted in Mekiet 

district, Amhara region, revealed significant variation 

in household resilience to food insecurity across 

agroecological zones. Households located in midland 

areas demonstrated higher resilience scores, largely 

attributed to diversified cropping systems and 

improved access to agricultural services, whereas 

those in lowland zones faced greater vulnerability 
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due to limited diversification and service constraints 

(Tofu et al., 2023b). Northern Ethiopia, particularly 

Gubalafto Woreda faced with erratic rainfall, 

droughts, and land degradation all of which 

undermine agricultural productivity and food 

security. Despite local resilience efforts, limited 

access to climate-smart adaptation and weak 

institutional support hinder progress. In response, 

households have adopted adaptive strategies such as 

off-farm income generation, small-scale irrigation, 

and productive safety net program (PSNP), and 

enhanced climate awareness. In study area, 

household resilience is shaped by access to 

institutions, sustainable land practices, and internal 

decision-making dynamics (DEEP, 2025; Tefera, 

2021 ).  

Literature on households’ resilience capacity is found 

globally, for instance Ali et al. (2023), examine the 

impact of Climate-Smart Agriculture (CSA) on 

household resilience, but the study’s limited 

disaggregate resilience outcomes across agroecology. 

Atara et al. (2020) and Teklu et al. (2023), examine 

household resilience capacity, but offer limited 

insight into how absorptive, adaptive, and 

transformative capacities contribute to overall 

resilience. Jayadas and Ambujam (2021), developed 

a farmer resilience index for coastal Tamil Nadu, but 

its limited sample size and narrow focus on physical-

economic indicators, with less attention to 

institutional and social dimensions. As described in 

Antwi-Agyei et al. (2013), it is important to conduct 

community-level assessments of resilience because 

households vary widely in their characteristics. 

Hence, there is a pressing need to understand which 

agroecology has successes resilience capacity and to 

implement location-specific adaptation strategies for 

enhance resilience capacity of rural households. 

Overall, the current study is relevant because of 

climate change significantly affects rural livelihoods, 

where agriculture is predominantly rain-fed and 

highly sensitive to climatic shocks. By examining 

households’ resilience capacities (absorptive, 

adaptive, and transformative): this study provides 

insights into how rural communities cope with, adapt 

to, and transform in response to climate-related risks. 

Understanding these capacities is critical for 

identifying vulnerable households and designing 

interventions that improve resilience and food 

security. 

This study seeks to fill the above gaps by estimating 

household resilience to climate change (absorptive, 

adaptive, and transformative capacities) in the 

Gubalafto Woreda of Ethiopia. Specifically: It 

identifies the factors influencing households’ 

resilience capacity, assesses the current level of 

household resilience to climate change, and examines 

variations in household resilience across 

agroecological zones. 

2. Materials and Methods 

2.1. Description of the study area 

This research was carried out in the Gubalafto district 

(Figure 1), situated in the southern region of the 

North Wollo Zone, Ethiopia. As reported by Asnake 

and Elias (2017), Gubalafto district lies between 

39°06'09" and 39°45'58" East longitude, and 

11°34'54" and 11°58'59" North latitude. The district's 

landscape is primarily defined by a series of 

mountains, hills, and valleys, with elevations ranging 

from 1,379 to 3,809 meters above sea level. It 

experiences annual rainfall between 800 mm and 

1,200 mm, along with average yearly temperatures of 

21°C to 25°C. The study area faced with erratic 

rainfall, droughts, and land degradation all of which 

undermine agricultural productivity and food 

security. Despite local resilience efforts, limited 

access to climate-smart adaptation and weak 

institutional support hinder progress (DEEP, 2025). 

Land use pattern of the Woreda includes arable land 

(34.1%), grazing land (17.9%), forest (27.1%), and 

water bodies (6%), rocky land (5%) and others 

(9.9%) respective (Mengistie and  Kidane, 2016). 

According to population projections from Ethiopian 

Statistical Service (2022) the study area has a total 

population of 172,818, composed of 87,027 males 

and 85,791 females. Gubalafto covering an area of 

900.49 square kilometers and has a population 

density of 191 individuals per square kilometer. 

As reported  by Andualem (2016), the major 

household economy of the study area is mixed crop-

livestock farming. For instance, key crops grown in 

the area are barley, wheat, teff, and sorghum and 

households engage in livestock rising, dairy farming, 
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and fattening of animals such as chickens, cattle, 

goats, and sheep to enhance their income. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1: Location map of the study area; Source: Authors visualization, 2024 

2.2. Sampling techniques 

Sampling aims to examine a representative subset 

of a clearly defined population to draw inferences 

about the whole population (Gilbert and  Stoneman, 

2015). In doing so, researchers jointly applied 

purposive and multistage random sampling 

techniques to select study sites and representative 

households. Multistage cluster sampling is used to 

ensure the inclusion of specific groups of interest 

across meaningful clusters. As a probability-based 

method, it involves dividing the population into 

smaller units (Woreda’s Kebeles cluster into 

lowlands, midlands, and highlands), allowing the 

proportional selection of respondents. 

First, Gubalafto district was selected as the study area 

through purposive sampling due to  climate 

vulnerability, agro-ecological diversity, and low 

adaptive capacity  (DEEP, 2025) which indicating the 

need for further research.  This non-probability 

sampling technique is appropriate when the 

researcher seeks to gain in-depth understanding from 

a location that exhibits specific characteristics 

aligned with the study focus. In the second stage, 

Gubalafto Woreda is classified into three 

agroecological zones on the basis of altitude and crop 

growing period: lowlands (500–1,500 m.a.s.l.) with 

over 210 days suitable for drought-tolerant crops; 

midland) (1,500–2,300 m.a.s.l.) with 150–210 days 

of diverse cereal and legume growth and highland 

(2,300–3,200 m.a.s.l.) with less than 150 days, 

favoring cool-climate crops such as barley and 

highland pulses. This classification aligns with MoA 

(2022). Furthermore, based on existing administrative 

system, Gubalafto Woreda is clustered into kebeles, 

with relatively even distributions across the highland, 

midland, and lowland zones. Hence, via lottery-based 

sampling, one kebele was randomly selected from 

each agroecological cluster, ensuring representation 

of the respective zones. The selected kebeles were 

Masso-Dengolla (highland), Gedo-Ber (midland), 

and Doro-Gibr (lowland). Finally, sample households 
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were selected from the chosen kebeles through 

systematic sampling, using household lists available 

at kebele administration offices as the sampling 

frame. 

In the literature, various methods are available for 

determining sample size, each suited to specific 

research contexts: Cochran (1963) formula is used 

when the population is large or infinite and the 

estimated proportion is known. It is widely used in 

surveys involving categorical data. КоThari (2004), 

formula applies to finite populations with a known 

proportion. The Yamane (1967) formula is applied 

when the population size is finite and known, but the 

estimated proportion is unknown. It is particularly 

useful in development studies where detailed 

population parameters may not be available.  

In this study area, the estimated proportion of the 

population was unknown, and the population was 

assumed to be relatively uniform in characteristics 

relevant to the study. Therefore, the Yamane (1967) 

sample size formula was employed. 

   
 

       
                                                           (1) 

  
    

             
  355                                   

Where n = the sample size, N = the total number of 

households in all Kebeles, and e is margin error (5%) 

at the 95% confidence level. 

After the total sample size was determined, sample 

households were selected from each kebele via 

proportional allocation on the basis of their respective 

population sizes (Table1). 

   
   

   
                                                                   (2) 

Where n is the sample size, ni is the required sample 

size in the ith Kebele, N is the total number of 

households across all Kebeles, and Ni is the total 

number of households in the ith Kebele.

 

Table 1: Number of sampled households     

Woreda  Agroecological zone Kebeles Total household Sampled household 

Gubalafto 

Highland 
Masso-

dengolla 
1093 123 

Midland Gedo-ber 908 102 

Lowland Doro-gibr 1162 130 

Total     3163 355 

2.3. Methods of data collection 

The study employed both primary and secondary data 

sources, with a primary emphasis on firsthand data 

collected from selected rural households within the 

study area. Primary data were obtained through a 

household survey; focus group discussions (FGDs), 

and key informant interviews (KII). A combination 

of semi- structured questionnaire, focus group 

discussions, and key informant interviews checklist 

were was used to gather both quantitative and 

qualitative data. Before the main survey, the data 

collection instruments were pretested with 35 non-

sample households to assess their reliability and 

validity. We then revised and refined the tools based 

on feedback from this pilot exercise to improve 

clarity, relevance, and effectiveness. To ensure 

accurate and contextually appropriate 

communication, all questionnaires were translated 

into Amharic, the local language spoken by the target 

population. 

Six enumerators were recruited for data collection 

based on their prior experience with field surveys and 

fluency in the local language, ensuring effective 

communication and data accuracy. They received a 

single two-day training covering the ODK, ethical 

standards for data collection, and proper 

administration of the questionnaires. Data collection 

was facilitated using the Kobo Collect mobile 

application, with daily uploads to a centralized Open 

Networked Analysis (ONA) server to ensure secure 

and timely data management. Throughout the data 

collection process, researchers provided continuous 
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support and guidance to the enumerators, addressing 

any challenges that arose from start to finish. 

2.4. Data analysis 

We analyzed the collected data using both descriptive 

and inferential statistical methods. Specifically, we 

applied Principal Component Analysis (PCA) to 

estimate the resilience capacity of households. In 

addition, we employed one-way ANOVA to test 

whether mean resilience capacity scores varied 

significantly across the three agroecological zones in 

the Gubalafto district. This approach aligns with the 

study’s objective of comparing group-level 

outcomes, as it enables the evaluation of differences 

in resilience capacity across independent categorical 

groups (i.e., agroecological zones). The model 

assumptions were considered in the PCA and 

ANOVA analyses. For instance (i) normality was 

tested using a histogram and the Shapiro–Wilk test, 

and the results indicated that the data were normally 

distributed; (ii) multicollinearity was test, as 

covariates were not perfectly correlated with each 

other, ensuring reliable estimation; this was verified 

using pairwise correlation (pwcorr) and variance 

inflation factor (VIF) tests; (iii) identified variables: 

continuous dependent variable (resilience index) and 

more than two discrete independent variables, which 

was identified like lowland, midland, and highland. 

Measurement error and selection bias were addressed 

through rigorous enumerator training and pretesting 

of survey tools to minimize misinterpretation and 

recording errors. Additionally, Cronbach’s alpha was 

applied to evaluate the internal consistency of items 

measuring the same construct. These steps helped 

ensure data reliability and validity. 

Measuring resilience is not a straightforward 

activity, as it is not directly observable. In this 

study, resilience was treated as a latent variable to 

be estimated via indicators, which were estimated 

via observable household-level variables. Bene et 

al. (2014) Propose that resilience emerges as the 

result of three capacities: absorptive, adaptive and 

transformative capacities. In this study, three major 

dimensions of resilience were identified: (i) 

absorptive capacity (ABPC), (ii) adaptive capacity 

(ADPC), and (iii) transformative capacity (TRNC). 

These three major dimensions were subdivided into 

subcomponents/indicators. Each of the indicators 

has constructed from observable variables (Table 

1). The resilience capacity index (RCI) was created 

using these indicators, which can be combined to 

determine the absorptive, adaptive, and 

transformative capacities of households. The same 

procedures were used by (Teklu et al., 2023). To 

estimate RC𝑖, it is necessary to estimate it 

separately. 

ABPj = f (FSSNj, ISSNj, DMEWSj, RMj),  

ADPj = f (FCj, ADPSj, Wj, FSj, SEj, OFFj), and  

TRNj = f (ITSNj, INFRAj, SNj, SSj)                         (3)  

Where ABPj is the absorptive capacity of household 

j, FSSN: formal social safety net, ISSN: informal 

formal social safety net, DMEWS: disaster 

mitigation and early warning system RM: risk 

management, FC: farmer characteristic, ADPS: 

adaptation strategies, W: wealth, FS: food security, 

SE: socioeconomic, OFF: off farm IT: information 

and training, INFRA: use of infrastructure of 

household, SN: social network, and SS: social 

service of household j for j = 1. . . n. 

The composite household resilience capacity 

(RCi) was also derived from the set of resilience 

dimensions, as outlined below. 

CRij = f (ABPj ADPj, TRNj)                           (4)     

Where CRij is the resilience capacity index of 

household j, and ABPj is absorptive capacity, 

ADPj is adaptive capacity, and TRNj is 

transformative capacity of household j for j = 1. 

. . n.  

However, resilience is not directly observable, and 

we cannot directly estimate the resilience or 

resilience dimensions. To overcome such challenges, 

Principal Component Analysis (PCA) was chosen 

over Factor Analysis (FA) to estimate resilience 

capacity primarily due to its suitability for data 

reduction and its minimal reliance on strong 

statistical assumptions (Alinovi et al., 2008). This 

study focuses on variance and dimensionality 

reduction, i.e., simplifying data for further analysis 

and running with PCA, whereas factor analysis is 

more suitable for exploring underlying relationships, 

i.e., the underlying factors influencing resilience 

capacity. PCA is designed to extract maximum 
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variance from observed variables and summarize 

them into a smaller set of uncorrelated components. 

This aligns well with resilience measurement, which 

often involves diverse indicators that need to be 

synthesized into a composite index. FA assumes that 

observed variables are influenced by unobserved 

latent factors and includes error terms, which may not 

be appropriate or identifiable in resilience studies 

with limited sample sizes, whereas FA often requires 

larger samples and strong assumptions about error 

structures and latent variables (Jolliffe and  Cadima, 

2016). 

The necessary statistical criteria for a robust PCA 

model were checked.  For instance, the Bartlett Test 

of Sphericity was conducted via factor test to assure 

variables significantly correlation with the 

components or not. Subsequently, KMO was 

conducted to measure sampling adequacy of 

individual variables used in the model. Rather, 

continuous variables were standardized and 

categorical variables were normalized, while 

variables with negative implications for resilience 

were reverse-coded. 

The resilience estimation was conducted 

hierarchically. First, resilience blocks (indicators) 

were derived from observable household-level 

variables using Principal Component Analysis 

(PCA). As proposed by Kaiser (1960), an eigenvalue 

greater than 1 criterion was applied to select 

components. In addition, components can also be 

"rotated" to simplify the structure of the loadings 

matrix. Implies a varimax rotation technique was 

used to produce more interpretable component. 

Varimax rotation is an orthogonal rotation technique 

applied after PCA to achieve a simpler and more 

interpretable component structure. It allows each 

variable to load strongly on only one principal 

component, making it easier to identify and label the 

underlying dimensions. Thus, achieving the heaviest 

loading of principal component expressed in terms of 

the variables as an index for each household that 

captured the largest amount of information. 

Subsequently, dimensional resilience index for each 

household was estimated separately using the derived 

indicators. Indices for each dimension were 

calculated as the product of the component scores 

and their corresponding weights (explained variance) 

(Adane, 2018). Accordingly, the model specified in 

Equation (3) was transformed into Equation (5). 

Hence, the dimensional resilience scores (CIᵢ) for 

each household was computed as follows: 

                                               (5)                                 

Where CIi is the score of a dimension (absorptive, 

adaptive, and transformative), wj is the percentage of 

variance explained by the i
th

 component (weight), and 

CSij is the component score of the i
th

 household on 

the j
th

 component. 

Following the above argument, this study employed 

14 variables to measure households’ absorptive 

capacity, 16 variables to measure their adaptive 

capacity, and 13 variables to measure their 

transformative capacity (Table 2). 

 In the second stage, PCA was applied to the 

resilience dimension, which was derived from the 

first-stage exercise. Finally, the resilience capacity 

index (RCi) was estimated for each household as a 

product of the component score and weight 

(explained variation) of a component via Equ 6. 

    
    
      

    
   

                                                        (6)                                                                                                       

Where RCi is the composite resilience score, CIj is 

component score of j
th

 component, wj is the weight of 

the j
th

 component. 

The estimated continuous dimensional and composite 

resilience scores were normalized to a 0–1 scale. 

These normalized values were then rescaled into 

three categories: According to the cut-off points 

proposed by Jayadas and Ambujam (2021) and 

Siminyu et al. (2020), households’ resilience levels 

were classified as follows: scores between 0.00 and 

0.33 indicate low resilience, scores from 0.34 to 0.66 

indicate medium resilience, and scores from 0.67 to 

1.00 indicate high resilience. 
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Table 2: Overview of the resilience capacity dimensions and indicators 

Dimension Indicators/components Variables Literature Measurement 

Absorptive 

capacity 

index Formal and Informal 

social safety net 

Income from PSNP  - Annual getting in Birr 

Friend support (Teklu et al., 2022) Annual getting in Birr 

Informal social insurance (Teklu et al., 2022) 1 if yes 0=otherwise 

Formal aid (NGO and  Gov.) - Annual getting in Birr 

Disaster mitigation 

and early warning 

system (DMEWS) 

Access to weather 

information 
(Teklu et al., 2022) 1 if yes 0=otherwise 

Mobile phone communication (Teklu et al., 2022) 1 if yes 0=otherwise 

Possession of communication 

Radios and televisions 
(Ali et al., 2023) 1 if yes 0=otherwise 

Remittances (Ali et al., 2023) Annual getting in Birr 

Risk management 

Decrease th quantity of meal (Teklu et al., 2022) 1 if yes 0=otherwise 

Decrease diversity of meal (Teklu et al., 2022) 1 if yes 0=otherwise 

Decrease the number  of meal   - 1 if yes 0=otherwise 

Borrow grain from neighbors (Teklu et al., 2022) 1 if yes 0=otherwise 

Sales of livestock (Teklu et al., 2022) Amount in Birr 

Provision of farm Labour (Siminyu, 2021) 1 if yes 0=otherwise 
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Dimension Indicators/components Variables Literature Measurement 

Adaptive 

capacity index 

Farmer characteristics  

Sex of household head (Ali et al., 2023) 1 if male 0 female 

Marital status  (Ali et al., 2023) 
0 if single, 1 if married, 2 if 

divorced, 3  

Education level measured 

in years 
(Siminyu, 2021) 

0= uneducated, 1=informal 

educated, 2 =primarily 

educated, 3 secondary  

Age  (Ali et al., 2023) Age in years of HH 

Farming experience  (Ali et al., 2023) experience in year 

Labor availability (Quandt, 2018) 
Number of HH members b/n 

18 – 55 

Adaptive strategies 

 Different crops planted (Quandt, 2018) 1 if yes 0=otherwise 

Use of improved verities (Ali et al., 2023) 1 if yes 0=otherwise 

Use of water-harvesting 

technologies 
(Teklu et al., 2022) 1 if yes 0=otherwise 

Wealth and income 

Working on-farm  (Siminyu, 2021) 1 if yes 0=otherwise 

Working off-farm  (Siminyu, 2021) 1 if yes 0=otherwise 

Total farm size 
(Ali et al., 2023; 

Teklu et al., 2023) 
Farm size in hectare 

Income source/average 

annual income 

(Siminyu, 2021; 

Teklu et al., 2022) 

Average annual income in 

Birr 

Livestock holding (Ali et al., 2023) TLU 

Deposit in bank (Siminyu, 2021) Total amount on Birr 

Physical asset - Value in Birr 

  Food consumption score 
(Getaneh et al., 

2022) 

 poor <=21, borderline if 

21.5-35, Acceptable  if >35 

Food security 
Multidimensional food 

security  
(Kini, 2022) 

food security if 1, mildly FI 

if 2, moderately FI  if 3, 

severe FI if 4 

Transformative 

capacity index  
Information, Training, 

and Social Networks 

Access to extension 

service 
(Teklu et al., 2022) 1 if yes 0=otherwise 

Access to agricultural 

training 
(Teklu et al., 2022) 1 if yes 0=otherwise 

Membership in  iqub (Ali et al., 2023) 1 if yes 0=otherwise 

Infrastructure 

Access to credit (Quandt, 2018)) 1 if yes 0=otherwise 

Access to irrigation (Ali et al., 2023) 1 if yes 0=otherwise 

Distance to  school  (Ali et al., 2023) Take in hours 

Distance to health  (Quandt, 2018) Take in hours 

Distance to market  - Take in hours 

Distance to dirk water (Ali et al., 2023) Take in hours 

Reliable all-weather road (Ali et al., 2023) 1 if yes 0=otherwise 

water and sanitation 

facilities 

(Siminyu, 2021; 

Teklu et al., 2022) 
1 if yes 0=otherwise 

Electricity 
(Siminyu, 2021; 

Teklu et al., 2022) 
1 if yes 0=otherwise 

Source: (Author`s compilation, 2024)

file:///D:/A.%20Dissertation%20Proposal/Result%20and%20data/Resilience/n%20the%20Central%20Rift%20Valley%20of%20Ethiopia.%20Ag
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3. Results and Discussion 

3.1. Examining factors contributing to resilience 

capacity 

Absorptive capacity: The size of component loading 

for each variable has important for policy implications; 

specifically, higher loadings indicate greater 

importance and should receive more policy attention. 

Before estimating absorptive capacity, each 

household's component scores were indexed 

(predicted) through PCA. Accordingly, the latent 

variable (ABPC) score was calculated using (Equ 7), 

which represents the sum of the principal component 

scores multiplied by the proportion of variation 

(weight) explained by each component. 

ABPCi = pc1 * 0.234+ pc2 * 0.119+ pc3 * 0.102+ pc4 

* 0.095                 (7) 

Where: ABPCi = absorptive capacity score for ith 

household; pc1, pc2 pc3 pc4= component score of the 

𝑖th household. 

Table 3 presents the component loadings of the 

variables used to estimate absorptive capacity (ABPC). 

As indicated, four components were retained due to 

their eigenvalues exceeding one. The Bartlett Test of 

Sphericity was significant (χ2=1061.84, p<.0.01), 

confirming that all fourteen variables were statistically 

significant, indicating adequate correlation with the 

components. Subsequently, KMO was 0.705 and well 

had above 0.5 for individual variables used in the 

model.   

Each variable exhibited loadings greater than 0.3 or 

less than -0.3, reflecting their substantial contributions 

to ABPC. Thus, the necessary statistical criteria for a 

robust PCA model were fulfilled, as outlined by 

Kaiser’s Rule (KMO values above 0.5). As indicated in 

(Table 3) first, second, third, and fourth components 

accounted for 23.4%, 11.9%, 10.2%, and 9.5% of the 

variation, respectively. Together, these variables 

explain 55.03% of the total variation. The findings 

revealed that, excluding remittances and formal aid, all 

other variables were positively and significantly 

associated with ABPC (p<0.01). This suggests that 

locally accessible and socially embedded resources, 

rather than external transfers, are more predictive of 

households’ ability to absorb shocks.  Notably, access 

to weather information, ownership of communication 

devices (such as radios, TVs, and mobiles), livestock 

sales, and informal social insurance had strong loadings 

on the first component, indicating their significant 

contributions to estimating ABPC. This finding align 

with Demisse et al. (2024), who found that safety nets 

and mobile phones are significant contributors to 

ABPC. Similarly, the importance of productive safety 

nets, meal reduction strategies, and grain borrowing 

from neighbors were major contributors to ABPC. This 

is consistent with Sunday et al. (2023), who found that 

access to informal safety nets is vital for enhancing the 

absorptive capacity of rural households in Uganda. 

This finding infer that access to weather information, 

communication devices, and informal safety nets is 

more critical for enhancing households' ability to 

absorb shocks. 

Adaptive capacity: As shown in Table 4, the KMO 

value was 0.7187, indicating that the sample size was 

sufficient to conduct PCA. Additionally, Bartlett’s test 

of sphericity was significant (p = 0.01, χ2= 2138.058), 

demonstrating significant correlations between each 

component and the variables. Therefore, the PCA 

model was deemed satisfactory and was used for 

estimation. As indicated in (Eq. 8), each household's 

component scores were indexed (predicted) through 

PCA. Subsequently, the ABPC score was computed 

using the component scores and the relative variance 

explained by each component as weights. Therefore, 

the ADPC score for each household was calculated as 

the weighted sum of its scores times the variance of 

each of the six components. 

ADPCi= pc1 * 0.23+pc2 * 0.14+pc3 * 0.09+pc4 * 

0.08+pc5 * 0.06+pc6 * 0.06                                       (8) 

Where: ADPCi = adaptive capacity score for ith 

household; pc1, pc2 pc3 pc4 pc5 pc5= component 

score of the 𝑖th household. 

As indicated in (Table 4) six components were 

extracted to calculate the ADPC scores, based on the 

criterion of eigenvalues greater than 1, accounting for 

67% of the total variance in the model. Subsequently, 

the components generated were significant in terms of 

the proportion of total variance explained and both 

were considered as the underlying ADPC. Notably, the 

first, second, third, fourth, fifth and sixth components 

obtained 23.1, 14.3, 9.5, 7.9, 6.2, and 6% of the 

variation respectively. 
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Table 3: Component loadings of variables used to estimate the ABPC

Source: (Authors household survey, 2024)          

 

Except for the sex of the household head, all other 

variables were strongly and positively correlated with 

ADPC at p<0.01, indicating their significant 

contribution to the ADPC. The negative loadings of sex 

indicate that ADPC decline as the head of household is 

female.  Physical assets, average annual income, and 

cash savings were grouped together and exhibited their 

highest component loadings on the first component. 

Meanwhile, educational level, farming experience, and 

the age of the household head showed higher loadings 

on the second component. Annual income, improved 

seed varieties, and water harvesting technologies were 

grouped together and exhibited their highest 

component loadings on the fourth component, 

indicating that these variables play a significant role in 

shaping household adaptive capacity. These findings 

align with evidence from Bekuma (2024), who noted 

that improved seed varieties and water conservation 

practices enhance both productivity and resilience 

among smallholder farmers. Likewise, Negera et al. 

(2025) reported that income diversification through off-

farm employment strengthens adaptive capacity by 

 Rotate, varimax  

Variables 

 Comp1 

(Disaster mitigation and early 

warning system) 

 Comp2 (Risk-

management) 

 Comp3 (Informal 

social safety net) 

Comp4  

(Formal social 

safety net) 

Productive safety 

net    
0.611 

Friend support   0.579  

Formal aid (NGO 

and  GO)    
-0.69 

Remittances  -0.386   

Informal social 

insurance 
0.304 

   

Access to weather 

information 
0.541 

   

Mobile phone 

communication 
0.415 

   

Ownership of  

radio and TV 
0.511 

   

Decrease quantity 

of meal   
0.331 

 

Decrease number 

of meal  
0.623 

  

Decrease diversity 

of meal  
0.6247 

  

Borrow grain from 

neighbors   
0.533 

 

Sales of livestock 0.3349    

provision of farm 

labour 
    0.361   

proportion of 

variance  0.234 0.119 0.102 
0.095 

Total variance explained/Rho: 55.03%  

Scale reliability coefficient/cronbach’s alpha:  0.544 

Bartlett Test of Sphericity: Chi-Square=1061.84, p=.000  

KMO Measure of Sampling  Adequacy=0.706   
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reducing dependence on rain-fed agriculture and 

mitigating climate risks. 

 

Table 4: Component loadings of variables used to estimate the adaptive capacity  

Variables Rotate, varimax  

Variables  Comp1 

(Wealth 

and 

income) 

 Comp2  

(Socio-

economi

c) 

 Comp3 

(Demographic 

characteristics) 

Comp4 

(Adaptive 

strategy) 

 Comp5 

(Food 

security) 

Comp6  (Off 

farm income) 

Sex household 

head 

  -0.665    

Marital status   0.666    

Education level 

of HH 

 0.463     

Farming 

experience 

 0.601     

Labor 

availability 

     0.399 

Age of 

household head 

 0.601     

Different crops 

planted 

0.386      

Improved 

verities 

   0.363   

Water 

harvesting 

technologies 

   0.329   

Working none-

farm  

0.307      

Working off-

farm  

     0.839 

Physical asset 0.4547      

Average annual 

income 

0.401   0.601   

Cash saving 0.449      

Multidimensional food 

security 

   0.777  

Food 

consumption 

score 

      0.514     

proportion of 

variance  

0.231 0.143 0.05 0.079 0.062 0.061 

Total variance explained/Rho: 67%    

Scale reliability coefficient/alpha:  0.704 

Bartlett Test of Sphericity: Chi-Square= 2138.058, p=.000 

   

Kaiser-Meyer-Olkin Measure of Sampling Adequacy: 0.719       

Source: (Authors household survey, 2024)          
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Transformative capacity: Transformative capacity is 

the third latent variable of resilience capacity, which 

enables conditions that foster resilience. Before 

estimating transformative capacity (TRNC), each 

household's component scores were indexed 

(predicted) through PCA. Subsequently, TRNC was 

calculated based on the component scores and the 

relative variance explained by each component as 

weights. The TRNC score for each household was 

derived as the weighted sum of its scores multiplied by 

the variance of each of the six components (Equ. 9).  

TRNCi= pc1 * 0.308+pc2 * 0.154+pc3 *0. 126+pc4 * 

0.077                                                                (9)  

All statistical requirements for a valid PCA model were 

tested and met, consistent with the Kaiser criterion. 

Specifically, the sample size was sufficient to run PCA, 

as indicated by the KMO measure (0.7827) and 

Bartlett’s sphericity test, which was significant (p< 

0.01, χ2 = 1617.5). In estimating transformative 

capacity, 13 observed variables were included in the 

PCA model. Four independent components were 

retained for calculating the TRNC scores based on an 

eigenvalue greater than 1. Together, these variables 

explain 66.5% of the total variation 

As presented in (Table 5) all thirteen variables were 

found to be positive and statistically significant, with 

component loadings greater than 0.358. The positive 

and high loadings of these variables indicate their 

significant contribution to estimating transformative 

capacity. Specifically, access to extension services, 

agricultural training, all-weather roads, and electricity, 

as well as the distance to the nearest school, health 

institution, and market, had strong loadings, indicating 

that each significantly contributes to the estimation of 

transformative capacity. This finding aligns with 

(Asmamaw et al., 2019; Dessie and  Demsie, 2024).                           

Table 5: Component loadings for the variables used to estimate the TRNC  

 Rotate, varimax  

Variables  Comp1 

(Training, information and 

basic services 

 Comp2 

(Infrastructure) 

 Comp3  

(Social 

network) 

Comp4 (Social 

services) 

Access to extension    0.676 

Access to agricultural 

training 

   0.537 

Membership in  iqub  0.495   

Membership RUSACO  0.609   

Access to credit  0.586   

Access to irrigation    0.409 

Distance to nearest 

school  

0.581    

Distance to nearest 

market 

0.555    

Distance to nearest 

health institution 

0.594    

Distance to drink water   0.489  

All-weather road   0.509  

Clear drink water and sanitation  0.358  

Electricity     0.588   

proportion of variance  0.308 0.154 0.126 0.077 

Total variance explained/Rho:  66.5%  

Scale reliability coefficient/alpha:  0.746 

Bartlett Test of Sphericity (chi-Square= 1617.5,P =.000 

 

Kaiser-Meyer-Olkin Measure of Sampling  Adequacy: 0.783   

Source: (Authors household survey, 2024)          
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Composite resilience capacity: As presented in the 

methodology section, PCA was conducted in its 

second stage to calculate the overall resilience 

capacity index (RCI) using the results from the three 

dimensions of resilience capacity. As a result, the 

Bartlett Test of Sphericity was significant (p<0.01, 

χ2=60.076), indicating sufficient correlations among 

the variables and their corresponding components. 

The KMO measure of sampling adequacy was 0.59. 

Therefore, all statistical criteria for the goodness of 

fit of the principal component analysis model were 

met. 

As indicated (Table 6) following the Kaiser criterion, 

one component was retained as its eigenvalue was 

equal to or greater than one, accounting for 

approximately 50% of the total variance. The 

component loadings for absorptive, adaptive and 

transformative capacity were 0.612, 0.534, and 0.583, 

respectively, indicating that absorptive capacity is a 

key contributor to enhancing resilience in rural 

households. This finding is align with work in 

Somalia by and in Ethiopia by Martin (2019) who 

reported that absorptive capacity had the highest 

component loadings and largest contribution to 

household resilience. But, the research conducted by 

Dessie and Demsie (2024) reported that 

transformative capacity is pivotal in influencing 

household resilience. Also, studies conducted in 

Tanzania and Uganda by Asmamaw et al. (2019), 

which revealed that adaptive capacity is the primary 

contributor to enhancing resilience capacity. Also, 

studies conducted in Tanzania and Uganda by 

d’Errico et al. (2018), which revealed that adaptive 

capacity is the primary contributor to enhancing 

resilience capacity. In contrary, d’Errico et al. (2018) 

also reported a negative correlation between 

transformative capacity and household resilience, 

suggesting that structural factors may not uniformly 

translate into improved outcomes without 

complementary enabling conditions. Overall, this 

finding suggests that absorptive capacity is the most 

critical factor for overall household resilience in rural 

households, significantly enhancing their ability to 

respond to shocks and stresses. 

.  

 

Table 6: Component loadings of resilience capacity to climate change 

 

3.2. Household resilience capacity status 

This paper used a resilience capacity index (RCI) as 

a proxy measurement of household climate 

resilience capacity. It generated household 

dimensional resilience indices and composite RCI. 

First, the absorptive capacity (ABPC), adaptive 

capacity (ADPC), and transformative capacity 

(TRNC) were estimated using fourteen; sixteen, 

and thirteen variables, respectively.  

As indicated in (Figure 2), approximately 19% of 

rural households were found to be high resilience 

capacity. This proportion is moderately consistent 

with findings by Ali et al. (2023) , who reported that 

             Rotate, varimax  

Dimensions 
 Comp1 

(composite resilience capacity) 

Absorptive capacity 0.612 

Adaptive capacity 0.534 

Transformative capacity 0.583 

Variance: 0.4841  

Total variance explained/Rho:   0.4841 

Scale reliability coefficient/alpha:  0.4091 

Bartlett Test of Sphericity: Chi-Square= 50.44, p=.000 

Kaiser-Meyer-Olkin Measure of Sampling  Adequacy:0.591 

Source: (Author household survey, 2024)          
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12.23% of households exhibited high resilience. 

Meanwhile, 44% of households in the current study 

fell into the low resilience category, suggesting that 

nearly half may be vulnerable to climate-related 

shocks. It is consistence with (Wereta et al., 2025). 

 Also, this vulnerability pattern aligns with Atara et 

al. (2020), who found that 61% of households in the 

Sidama zone were classified as non-resilient. The 

remaining 38% of households in Gubalafto 

demonstrated medium resilience capacity. This 

distribution contrasts slightly with Siminyu et al. 

(2020), whose study in a similar East African setting 

revealed that most households had resilience indices 

ranging between 0.34 and 0.66, indicating a 

predominance of medium resilience. Suggesting 

divergence in resilience profiles across these studies 

may reflect differences in livelihood strategies, 

institutional support, and agro-ecological conditions. 

This study finding highlights persistent resilience 

gaps in rural communities, underscoring the need for 

targeted, context-specific interventions to strengthen 

resilience capacity and reduce vulnerability. 

Figure 2: Resilience status of households 

As indicated in (Figure 3), highland and midland 

areas account for approximately 37% of households 

with low resilience followed by lowland zones 

(27.1%). This pattern underscores the pronounced 

vulnerability of highland and midland households, 

which not only represent the largest share of the 

sample but also exhibit the highest concentration of 

low resilience. Suggests lowland communities may 

benefit from more favorable conditions such as 

access to irrigation, remittances, and lower erosion 

rates that enhance their adaptive capacity. In contrast, 

Tofu et al. (2023b) reported that in the Mekiet 

district, midland households exhibited higher 

resilience due to diversified farming systems and 

improved access to agricultural services, while 

lowland households were more vulnerable. On the 

other hands, this study findings are broadly consistent 

with the work of Jayadas and Ambujam (2021), 

Aboye et al. (2023), and DEEP (2025), both were 

confirm resilience variations across agroecological 

zones.  Critically, the results from this study 

underscore the importance of agroecological context 

in shaping household resilience outcomes. The 

overall findings revealed varying degrees of 

resilience capacity across agro-ecological zones.  

3.3. Agroecological-wise of resilience capacity 

The resilience index for each agroecology offers a 

nuanced understanding of how different areas cope 

with challenges. As described in Joerin et al. (2014), 

this approach allows to better visualize resilience 

across agroecological contexts.  To do so, one-way 

ANOVA was employed to test mean difference of 

household resilience capacity among the different 

agroecological zones. 

As shown in (Table 7), the mean of ABPC, ADPC, 

and TRNC were 0.466, 0.320, and 0.239 respectively. 

This indicated that the mean ABPC is greater than the 

others. A statistically significant mean difference in 

ABPC was observed between agroecology with a 

significance level of 0.0147. Surprisingly, the mean 

ABPCI in the highland was 0.485, exceeding the 

values of the other two agroecology zones. On the 

contrary, the midland agroecology had a mean index 

of 0.422, which was lower than those of the highland 

and lowland. 
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Figure 3: Resilience index distribution of households in precent 

RCI = Resilience capacity 

Another plausible interpretation is that the mean 

ABPC in the midland was 0.061 units lower than 

highland, with a significance level of 0.032. This 

indicates that midland's mean ABPC was 

approximately 6.1% times lower than highland. 

Similarly, there was a mean difference of 0.059 in 

ABPC between lowland and midland, with a 

significance level of 0.041. This means that the mean 

ABPC of lowland is 5.9% times higher than the dega, 

suggesting that the mean ABPC in lowland is higher 

than in midland (see Table 8). As observed that many 

farmers in midland lack access to government aid and 

the Productive Safety Net Program (PSNP) compared 

to those in highland, which may contribute to the 

lower absorptive capacity in midland. Additionally, 

farmers in midland had limited access to remittances 

compared to those in lowland. 

There was a statistically significant difference in 

ADPC scores between the three agroecology, with a 

significance level of 0.0318. The average ADPC 

score was highest in lowland (0.339); followed 

closely by highland (0.332), while midland records 

the lowest mean at 0.282 (see Table 7). Table 8 

further confirms that difference in mean ADPC 

between lowland and midland was 0.057, with a 

significance level of 0.041. This means that ADPC of 

lowland was 0.057 times higher than the mean ADPC 

of midland. This suggests that the conditions in 

lowland may lead to better ADPC outcomes 

compared to midland. 
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Table 7: One-way ANOVA: Resilience status of agroecological zones 

Agro-ecology Absorptive capacity Transformative capacity Resilience capacity 

Highland 0.485 0.208 0.307 

Midland 0.422 0.23 0.253 

Lowland 0.481 0.277 0.416 

Mean 0.466 0.239 0.331 

 Std. dev.  0.179 0.208 0.323 

Prob > F 0.0147 0.0272 0.0004 

Source: (Authors household survey, 2024)          

A one-way ANOVA was conducted to assess mean 

differences in resilience indices across agroecological 

zones, revealing an overall mean RCI of 0.33 (Table 

8). Surprisingly, lowland had the highest mean RCI 

(0.416), followed by highland (0.307), and while 

midland had lowest mean RCI (0.253). This result 

indicated a significant mean difference among the 

agroecology zones, with a p-value of 0.01. 

Specifically, lowland had a statistically significant 

higher mean RCI compared to highland, with a p-

value of 0.02, showing a difference of 0.039 in mean 

RCI. Similarly, lowland was higher than by 0.042 

mean RCI as compared to highland. This is in line 

with  (Tofu et al., 2023a),  who reported that the 

resilience index for lowlands is 0.328, demonstrating 

that lowland agro-pastoral livelihoods are 

comparatively better adapted to climate variability. 

This study confirm that there are varying degrees of 

resilience across different agro-ecological. This 

finding aligns with previous research by Atara et al. 

(2020), which indicated that various livelihood 

systems contributed significantly to variations in 

household resilience capacity. Thu, underlining the 

critical role of geographic contexts in shaping 

household resilience capacities is so important.   

 

Table 8: Multiple comparisons of marginal linear prediction 

Absorptive capacity Contrast     Std. dev.   P>|t|  

                        Midland vs. highland -0.061 0.024 0.032** 

                        Lowland vs. highland  -0.003 0.022 1.00 

                        Lowland vs. midland 0.059 0.024 0.041** 

Adaptive capacity    

                        Midland vs. highland  -0.049 0.023 0.104 

                        Lowland vs. highland  0.008 0.022 1.00 

                        Lowland vs. midland 0.057 0.023 0.041** 

Transformative capacity    

                        Midland vs. highland  0.022 0.028 1.00 

                        Lowland vs. highland 0.046 0.028 0.276 

                       Lowland vs. midland 0.069 0.026 0.026** 

Resilience capacity index    

                        Midland vs. highland  -0.053 0.042 0.628 

                        Lowland vs. highland 0.109 0.039 0.02** 

                        Lowland vs. midland 0.162 0.042 0.00*** 

Source: (Authors household survey, 2024)          
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4. Conclusion and Recommendation 

Absorptive capacity plays a critical role in building 

household resilience capacity, followed by adaptive 

and transformative capacities. Absorptive capacity 

showed relatively better performance, suggesting 

some households demonstrating the ability to cope 

with immediate shocks. Significant proportion of 

rural households exhibited low resilience, 

indicating majority of households lack the ability to 

adapt and transform their practices in response to 

climate change.  

Highland and midland areas showed higher 

concentrations of low resilience, while lowland 

households demonstrated relatively stronger 

resilience, likely due to better access to irrigation, 

remittances, and reduced erosion.  

Policy makers should enhance adaptive and 

absorptive capacities through tailored extension 

services, early warning systems, and climate-smart 

infrastructure. In addition, targeting agroecological 

vulnerabilities by prioritizing interventions in 

highland and midland zones where resilience is 

lowest. 

The authors recognize the inherent limitations of 

using cross-sectional data which leads the possibility 

of bias in data collection, particularly in addressing 

potential endogeneity concerns. Reliance on self-

reported data for yields and income may be subject to 

recall bias, potentially affecting the accuracy of the 

resilience assessment. To enhance validity, future 

research should triangulate these findings with 

extension records where available and investigate 

long-term resilience using longitudinal data. 

Acknowledgments 

The authors acknowledge Gubalafto Woreda 

Administration, Agricultural, Irrigation offices for 

their financial support. They also extends their 

acknowledgment to Bahir Dar and Woldiya 

Universities. 

 

Conflicts of Interest 

 The authors declare that there is no conflict of 

interest regarding the publication of this manuscript. 

Data Availability Statement 

Data will be made available on request. 

Funding  

This study was funded by the Ministry of Education 

of Ethiopia. 

References 

Aboye, A., Kinsella, J., and  Mega, T. (2023). Farm 

households’ adaptive strategies in response to 

climate change in lowlands of southern Ethiopia. 

International Journal of Climate Change 

Strategies and Management, 15. 

https://doi.org/10.1108/IJCCSM-05-2023-0064   

Adane, A. (2018). Rural households’ resilience to 

food insecurity in Southern Ethiopia: The case of 

Boricha Woreda in Sidama Zone Phd Thesis. 

Ethiopia: Addis Ababa University].   

Ali, H., Menza, M., Hagos, F., and  Haileslassie, A. 

(2023). Impact of climate smart agriculture on 

households’ resilience and vulnerability: An 

example from Central Rift Valley, Ethiopia. 

Climate Resilience and Sustainability, 2(2), 

e254.   

Alinovi, L., Mane, E., and  Romano, D. (2008). 

Towards the measurement of household 

resilience to food insecurity: applying a model to 

Palestinian household data. In Deriving food 

security information from national household 

budget surveys. Experiences, achievement, 

challenges (pp. 137-152). Food and Agricultural 

Organization of the United Nations.   

Andualem, T. (2016). A review on cattle husbandry 

practices in Ethiopia. International  

Journal of Livestock Production,, 7(2), 5-11. 

https://doi.org/ 

https://doi10.5897/IJLP2015.0276   

Antwi-Agyei, P., Dougill, A. J., Fraser, E. D., and  

Stringer, L. C. (2013). Characterising the nature 

of household vulnerability to climate variability: 

Empirical evidence from two regions of Ghana. 

Environment, Development and Sustainability, 

15, 903-926.   

Asmamaw, M., Mereta, S. T., and  Ambelu, A. 

(2019). Exploring households’ resilience to 

climate change-induced shocks using Climate 

Resilience Index in Dinki watershed, central 

highlands of Ethiopia. PloS one, 14(7), 

e0219393.   

Asnake, B., and  Elias, E. (2017). Challenges and 

extents of soil and water conservation measures 

in Guba-Lafto Woreda of North Wollo, Ethiopia. 

Journal of Agricultural Research and 

https://doi.org/10.1108/IJCCSM-05-2023-0064
https://doi.org/
https://doi10.5897/IJLP2015.0276


Wereta et al  J. Agri. Environ. Sci. 10(2), 2025 

Journal of the College of Agriculture and Environmental Sciences, Bahir Dar University                                       146 
 

Development, 7(2), 103-110. 

https://doi.org/https://doi.org/10.18685/EJARD(

7)2_EJARD-16-012   

Atara, A., Tolossa, D., and  Denu, B. (2020). 

Analysis of rural households’ resilience to food 

insecurity: Does livelihood 

systems/choice/matter? The case of Boricha 

woreda of sidama zone in southern Ethiopia. 

Environmental Development, 35, 100530.   

Ayugi, B., Eresanya, E. O., Onyango, A. O., Ogou, F. 

K., Okoro, E. C., Okoye, C. O., Anoruo, C. M., 

Dike, V. N., Ashiru, O. R., and  Daramola, M. T. 

(2022). Review of meteorological drought in 

Africa: historical trends, impacts, mitigation 

measures, and prospects. Pure and Applied 

Geophysics, 179(4), 1365-1386.   

Bahta, Y. T., and  Myeki, V. A. (2022). The impact 

of agricultural drought on smallholder livestock 

farmers: Empirical evidence insights from 

Northern Cape, South Africa. Agriculture, 12(4), 

442.   

Bekuma, G. M. (2024). Climate-Smart Agriculture 

and Agricultural Diversification Effects on 

Productivity and Resilience of Smallholder 

Farmers in Ethiopia. International Journal of 

Energy and Environmental Science, 9(6), 130-

142.   

Belay, A., Recha, J. W., Woldeamanuel, T., and  

Morton, J. F. (2017). Smallholder farmers’ 

adaptation to climate change and determinants of 

their adaptation decisions in the Central Rift 

Valley of Ethiopia. Agriculture and  Food 

Security, 6(1), 1-13. 

https://doi.org/https://doi10.1186/s40066-017-

0100-1   

Bene, C., Newsham, A., Davies, M., Ulrichs, M., and  

Godfrey‐Wood, R. (2014). Resilience, poverty 

and development. Journal of international 

development, 26(5), 598-623.   

Béné, C., Newsham, A., Davies, M., Ulrichs, M., and  

Godfrey‐Wood, R. (2014). Resilience, poverty 

and development. Journal of international 

development, 26(5), 598-623.   

Bene, C., Wood, R. G., Newsham, A., and  Davies, 

M. (2012). Resilience: new utopia or new 

tyranny? Reflection about the potentials and 

limits of the concept of resilience in relation to 

vulnerability reduction programmes. IDS 

Working Papers, 2012(405), 1-61.   

Cochran, W. G. (1963). Sampling Techniques (2nd 

ed.). John Wiley and  Sons.   

d’Errico, M., Romano, D., and  Pietrelli, R. (2018). 

Household resilience to food insecurity: 

Evidence from Tanzania and Uganda. Food 

Security, 10(4), 1033-1054.   

DEEP. (2025). Resilience to CliIDate Change in 

Ethiopia (2021-2025): Tracking Changes and 

Unpacking Intra-Household Responses Third 

Survey Report. 

https://doi.org/10.55158/DEEPRP1 

Demisse, U., Bazezew, A., and  Bantigegen, S. 

(2024). Rural households’ resilience to the 

adverse impacts of climate variability and food 

insecurity in the North-eastern highlands of 

Ethiopia. Heliyon, 10(12).   

Dessie, T. A., and  Demsie, B. S. (2024). Rural 

household resilience to food insecurity in Mekiet 

district, Ethiopia. Frontiers in Sustainable Food 

Systems, 8, 1391904.   

Ethiopian Ministry of Agriculture (MoA). (2022). 

Agroecology: An Extension Training Manual. 

https://moa.gov.et/wp-

content/uploads/2025/01/20220325_Agroecolog

y-Manual.pdf 

Ethiopian Statistical Service. (2022). Ethiopia 

Population Projection 2022. 

https://data.reqiq.co/data/ethiopia-population-

projection-2022/ 

Fadairo, O., Olajuyigbe, S., Osayomi, T., Adelakun, 

O., Olaniyan, O., Olutegbe, N., and  Adeleke, O. 

(2020). Climate Change, Rural Livelihoods and 

Ecosystem Nexus: Forest Communities in Agro-

ecological zones of Nigeria. In (pp. 1-24). 

https://doi.org/10.1007/978-3-030-42091-8_155-

1   

Frankenberger, T., and  Nelson, S. (2013). 

Background paper for the expert consultation on 

resilience measurement for food security. 

TANGO International–Expert Consultation on 

Resilience Measurement Related to Food 

Security, sponsored by the Food and 

Agricultural Organization and World Food 

Programme, Rome, Italy, February, 19-21.   

Gilbert, N., and  Stoneman, P. (2015). Researching 

social life. Sage.   

Green, F. E. s. C. R. (2019). Economy National 

Adaptation Plan. FDRE: Addis Ababa, Ethiopia.   

https://doi.org/https:/doi.org/10.18685/EJARD(7)2_EJARD-16-012
https://doi.org/https:/doi.org/10.18685/EJARD(7)2_EJARD-16-012
https://doi.org/https:/doi10.1186/s40066-017-0100-1
https://doi.org/https:/doi10.1186/s40066-017-0100-1
https://doi.org/10.55158/DEEPRP1
https://moa.gov.et/wp-content/uploads/2025/01/20220325_Agroecology-Manual.pdf
https://moa.gov.et/wp-content/uploads/2025/01/20220325_Agroecology-Manual.pdf
https://moa.gov.et/wp-content/uploads/2025/01/20220325_Agroecology-Manual.pdf
https://data.reqiq.co/data/ethiopia-population-projection-2022/
https://data.reqiq.co/data/ethiopia-population-projection-2022/
https://doi.org/10.1007/978-3-030-42091-8_155-1
https://doi.org/10.1007/978-3-030-42091-8_155-1


Wereta et al  J. Agri. Environ. Sci. 10(2), 2025 

Journal of the College of Agriculture and Environmental Sciences, Bahir Dar University                                       147 
 

Harvey, C. A., Saborio-Rodríguez, M., Martinez-

Rodríguez, M. R., Viguera, B., Chain-

Guadarrama, A., Vignola, R., and  Alpizar, F. 

(2018). Climate change impacts and adaptation 

among smallholder farmers in Central America. 

Agriculture and  Food Security, 7(1), 1-20.   

IPCC. (2021). Climate change 2021: The physical 

science basis. Contribution of Working Group I 

to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change.   

Jayadas, A., and  Ambujam, N. (2021). Research and 

design of a Farmer Resilience Index in coastal 

farming communities of Tamil Nadu, India. 

Journal of Water and Climate Change, 12(7), 

3143-3158.   

Jiri, O., Phophi, M. M., Mafongoya, P. L., and  

Mudaniso, B. (2022). Climate change adaptation 

and resilience on small-scale farmers. In Disaster 

Risk Reduction for Resilience: Disaster and 

Social Aspects (pp. 451-462). Springer.   

Joerin, J., Shaw, R., Takeuchi, Y., and  

Krishnamurthy, R. (2014). The adoption of a 

climate disaster resilience index in Chennai, 

India. Disasters, 38(3), 540-561.   

Jolliffe, I. T., and  Cadima, J. (2016). Principal 

component analysis: a review and recent 

developments. Philosophical transactions of the 

royal society A: Mathematical, Physical and 

Engineering Sciences, 374(2065), 20150202.   

Kaiser, H. F. (1960). The application of electronic 

computers to factor analysis. Educational and 

psychological measurement, 20(1), 141-151. 

https://doi.org/https://doi.org/10.1177/00131644

6002000   

Koo, J., Thurlow, J., ElDidi, H., Ringler, C., and  De 

Pinto, A. (2019). Building resilience to climate 

shocks in Ethiopia. International Food Policy 

Research Institute.   

Kosmowski, F. (2018). Soil water management 

practices (terraces) helped to mitigate the 2015 

drought in Ethiopia. Agricultural water 

management, 204, 11-16.   

Martin, S. (2019). Somalia resilience recurrent 

monitoring survey (RMS) report. February. The 

Resilience Evaluation, Analysis and Learning 

(REAL) Associate Award, Washington, DC.   

Mekonnen, A., Tessema, A., Ganewo, Z., and  Haile, 

A. (2021). Climate change impacts on household 

food security and farmers adaptation strategies. 

Journal of Agriculture and Food Research, 6, 

100197.   

Mengistie, D., and  Kidane, D. (2016). Assessment of 

the impact of small-scale irrigation on household 

livelihood improvement at Gubalafto District, 

North Wollo, Ethiopia. Agriculture, 6(3), 27. 

https://doi.org/ 

https://doi.org/10.3390/agriculture6030027   

Negera, M., Dejen, Z. A., Melaku, D., Tegegne, D., 

Adamseged, M. E., and  Haileslassie, A. (2025). 

Agricultural productivity of solar pump and 

water harvesting irrigation technologies and their 

impacts on smallholder farmers’ income and 

food security: evidence from Ethiopia. 

Sustainability, 17(4), 1486.   

Nguyen, H. L., and  Akerkar, R. (2020). Modelling, 

measuring, and visualising community 

resilience: A systematic review. Sustainability, 

12(19), 7896.   

Oxfam. (2017). The Future is a Choice Absorb, 

adapt, transform Resilience Capacities.   

Shi, Y., Zhao, L., Zhao, X., Lan, H., and  Teng, H. 

(2022). The Integrated Impact of Drought on 

Crop Yield and Farmers ’ Livelihood in Semi-

Arid Rural Areas in China. Land, 1-13. 

https://doi.org/https://doi.org/10.3390/land11122

260   

Siminyu, P. (2021). Assessing the contribution of 

climate-smart agricultural Assessing the 

contribution of climate-smart agricultural 

practices to the resilience of maize farmers in 

Bungoma County, Kenya Philip. Agricultural 

and Resource Economics 16(2), 126-139. 

http://ageconsearch.umn.edu   

Siminyu, P., Mbau, J., and  Oluoch-Kosura, W. 

(2020). The contribution of climate smart 

agriculture practices in mitigating farmers 

against maize yield losses, a case of Bukembe 

ward in Bungoma county. Journal of 

Sustainability, Environment and Peace, 3(2), 41-

45.   

Sunday, N., Kahunde, R., Atwine, B., Adelaja, A., 

and  George, J. (2023). How specific resilience 

pillars mitigate the impact of drought on food 

security: Evidence from Uganda. Food security, 

15(1), 111-131.   

Tefera, W. ( 2021 ). Determinants of Rural 

Households’ Resilience Capacity to the Effect of 

https://doi.org/https:/doi.org/10.1177/001316446002000
https://doi.org/https:/doi.org/10.1177/001316446002000
https://doi.org/
https://doi.org/10.3390/agriculture6030027
https://doi.org/https:/doi.org/10.3390/land11122260
https://doi.org/https:/doi.org/10.3390/land11122260
http://ageconsearch.umn.edu/


Wereta et al  J. Agri. Environ. Sci. 10(2), 2025 

Journal of the College of Agriculture and Environmental Sciences, Bahir Dar University                                       148 
 

Land Degradation: The Case of Gubalafto 

Woreda,  

Teklu, A., Simane, B., and  Bezabih, M. (2022). 

Effectiveness of Climate-Smart Agriculture 

Innovations in Smallholder Agriculture System 

in Ethiopia. Sustainability (Switzerland), 14(23). 

https://doi.org/ https://doi.org/10.3390/ 

Teklu, A., Simane, B., and  Bezabih, M. (2023). 

Effect of Climate Smart Agriculture Innovations 

on Climate Resilience among Smallholder 

Farmers: Empirical Evidence from the Choke 

Mountain Watershed of the Blue Nile Highlands 

of Ethiopia. Sustainability (Switzerland), 15(5), 

1-26. https://doi.org/ 

https://doi.org/10.3390/su15054331   

Tofu, D. A., Fana, C., Dilbato, T., Dirbaba, N. B., 

and Tesso, G. (2023a). Pastoralists’ and agro-

pastoralists’ livelihood resilience to climate 

change-induced risks in the Borana zone, south 

Ethiopia: Using resilience index measurement 

approach. Pastoralism, 13(1), 1-14.   

Tofu, D. A., Mekuria, M. M., and  Ogato, G. S. 

(2023b). Climatic extremes’ resilient livelihoods 

of rural households in the Eastern Ethiopia. 

Agriculture and  Food Security, 12(1), 42. 

https://doi.org/10.1186/s40066-023-00446-0   

Walker, B., and  Salt, D. (2012). Resilience thinking: 

sustaining ecosystems and people in a changing 

world. Island press.   

Wereta, M. S., Ayele, Z. A., and  Damtie, Y. A. 

(2025). A review on climate-smart agriculture 

technologies and its impacts on small-scale 

farmers' livelihood in Ethiopia. Journal of Water 

and Climate change, 16(6), 1913-1926.   

WFP and  CSSA. (2022). Comprehensive Food 

Security and Vulnerability Analysis (CFSVA), .   

Yamane, T. (1967). Statistics: An introductory 

analysis.   

КоThari, C. (2004). Research Methodology-Methods 

and Techniques.   

 

https://doi.org/
https://doi.org/10.3390/
https://doi.org/
https://doi.org/10.3390/su15054331
https://doi.org/10.1186/s40066-023-00446-0

