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Abstract

The main objective of this research was to characterize and identify drought
incidence using both historic rainfall (RF) data and satellite-images. From the
analysis of the relationships between average 12 months RF and NDVI, there were
high R? values for rainy months. For the remaining dry months of the year, there
were low relationships (with R’ values of less than 0.5). We concluded that it is
possible to use the near real-time MSG and historical NOAA AVHRR NDVI and
Dev_NDVI data with some calibration and validation to identify and predict
drought incidences. The outputs of this research can help decision makers to take
appropriate actions to mitigate the adverse effects of drought.
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Introduction

Frequent and severe drought has become one of the most important natural
disasters in sub-Saharan Africa, especially in Ethiopia. The issue of drought
monitoring has also received attention from experts and scientists. This is
due to the fact that drought is one of the major causes of economic, social,
and environmental crises (Tadesse et al., 2008). Its effect is marked by the

creation of uncertain agricultural economies in developing countries
(UNEP, 2006).

Drought is defined as “the naturally occurring phenomenon that exists when
precipitation has been significantly below normal recorded levels, causing
serious hydrological imbalances that adversely affect land resource
production systems” (UNCCD, 1999). Drought is also defined as a
prolonged, abnormally dry period when there is not enough water for users’
normal needs, resulting in extensive damage to crops and loss of yields
(Wilhite, 2005). These definitions of drought are conceptual definitions and
are the basis for the operational definition. The operational definition of
drought focuses on identifying the beginning, end, spatial extent, and
severity of the drought in a given region and it is based on scientific
reasoning. The analysis is done using hydro-meteorological information and
is beneficial in developing drought policies, early warning monitoring

systems, mitigation strategies, and preparedness plans (Smakhtin and
Hughes, 2004).

There are three types of drought: meteorological drought, agricultural
drought, and hydrological drought (UNISDR, 2009). The definitions for
these three drought types are given by UNISDR (2009). While
meteorological drought is usually defined by a precipitation deficiency over
a pre-determined period of time, agricultural drought is defined more
commonly by the lack of soil water to support crop and forage growth than
by the departure of normal precipitation over some specified period of time.
Hydrological drought is normally defined by deficiencies in surface and
spbsurfacc water supplies relative to average conditions at various points in
time through the seasons. These three types of drought gradually contribute
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to socioeconomic drought, which is the anomaly in supply and demand for
economic goods (such as water, livestock forage, hydroelectric power, etc.)
that are dependent upon precipitation (UNISDR, 2009).

National Meteorological Agency of Ethiopia has attempted to collect and
document the history of drought and its impact on various administrative
regions of Ethiopia from different national and international documents.
Accordingly, the analysis of the chronological events of Ethiopian drought
has been divided into four parts (NMSA, 1996). The first one is from 253
B.C. (Before Christ) to A.D. (Anno Domini — “in the year of our lord™);
during this period, one drought was reported in seven years' time. The
second one is reported from A.D. to 1500 A.D. During this time there were
devastating droughts known as “Asah”, “Fassas” and “Higlah”, which killed
millions of lives. In this period, there were 177 droughts in the country,
about one every nine years. The third period was from 1500 to 1900, and
the information is relatively based on recorded data and, therefore, more
reliable. From the 16 to the first half of the 20™ century, ten, fourteen,
twenty-one, sixteen, and eight droughts were reported, respectively,
suggesting sixty-nine events in a period of 450 years. The two notorious
droughts known as “Quachine” and “Kifuken”, which devastated major
areas of the country, were reported during this period. The fourth period
(from 1950 to 1988) is well documented with scientific data. The analysis
of the rainfall data during this period indicated 18 droughts in 38 years,
suggesting the occurrence of drought every two years. The worst period
appears to be the 1980s and the worst year is 1984 (NMSA, 1996).

In the analysis of drought, the onset, duration, and severity of droughts are
often difficult to determine and the characteristics may vary significantly
from one region to another (Rulinda et al, 2010). In rainfz}ll-giepe_rldent
agriculture production areas, seasonal rainfall variability is }ncvltably
reflected in both highly variable production levels and in the risk-averse
livelihoods of local farmers (Cooper et al., 2008).

The conventional approach to drought monitoring land early ?Vaming
systems using ground-based data collection is tedious, llme consuming, and
difficult (Prasad et al., 2007). In recent years, remote sensing data has been
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used for monitoring agro-climatic conditions, the state of the agricultural
fields, vegetation cover, and to estimate crop yield in various countries. In
particular, the advanced very high resolution radiometer (AVHRR) NDVI
data has been used in vegetation monitoring, crop yield assessment, and
forecasting (Hayes er al., 1982; Benedetti and Rossini, 1993; Quarmby et
al., 1993; Unganai and Kogan, 1998; Kogan et al., 2003). The National
Oceanic and Atmospheric Administration (NOAA) AVHRR-series satellite
data provides a long-term record of NDVI data that can be used in the
prediction of crop yield (Prasad ef al., 2007).

The other remote sensing data source for monitoring agro-climatic
conditions is Meteosat Second Generation (MSG) satellite. MSG is the new
European system of geostationary meteorological satellites together with
the associated infrastructure. It was developed to succeed the highly
successful series of original Meteosat satellites that served the
meteorological community for over two decades since it was first launched
in 1977 (EUMETSAT, 2005). The advanced Spinning Enhanced Visible
and Infrared Imager (SEVIRI) radiometer onboard of the MSG series of
geostationary satellites enables the Earth to be scanned in 12 spectral
channels, from visible to thermal infrared, at 15-minute intervals. Each of
the 12 channels has one or more specific applications, either when used
alone or in conjunction with data from other channels.

From the climatologically data sources, Standard Precipitation Index (SPI)
is the usual drought monitoring parameter. The SPI is an index based on the
probability of recording a given amount of precipitation, and the
probabilities are standardized so that an index of zero indicates the median
precipitation amount (half of the historical precipitation amounts are below
the median, and half are above the median). The index is negative for
drought, and positive for wet conditions. As the dry or wet conditions
become more severe, the index becomes more negative or positive (Ntale
and Gan, 2003). SPI can also be used to determine the magnitude of a
drought in a locality. Drought magnitude is the duration of drought with

n;gative SPI deviation expressed in time period of month(s) (McKee et al.,
1993),
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The two drought monitoring approaches, namely climate variable indices
based and remote sensing based (satellite-derived vegetation indices (VIs))
were separately used in the past. Various studies have also demonstrated the
relationships between climate variables (e.g., precipitation) and satellite-
derived VIs (Di et al., 1994; Ji and Peters, 2003). Even though there had
been various efforts in the past to use meteorological point data or remotely
sensed data, there were limited efforts to integrate these two approaches for
practical drought monitoring to save drought victims. The main objective of
this research is to characterize and identify drought incidence using both
historic rainfall data and satellite images.

Materials and Methods

Study Area

The study area for this research is the whole of Ethiopia. Ethiopia occupies
the interior of the Horn of Africa stretching between 3% and 14° Nzlatitude
and 33" and 48° E longitude, with a total area of 1.13 million km (EMA,
1988).

Ethiopia is located in the tropics and variations in altitude have produced a
variety of microclimates. Mean annual rainfall ranges from 2000 mm over
some pocket areas in the southwest highlands, and less than 250 mm in the
lowlands. In general, annual precipitation ranges from 800 to 2200 mm in
the highlands (>1500 meters above sea level) and varies from less than 200
to 800 mm in the lowlands (<1500 meters above sea level). Rainfall also
decreases northwards and eastwards from the high rainfall pocket area in
the southwest (NMSA, 1996).

Data Sources and Analysis

For this study, historic rainfall (RF) data sets from the Ethiopian
Meteorological Agency, and satellite images from I\'/lcteosa‘t 'Secc_'nd
Generation (MSG) and National Oceanic and Atmospheric Administration
(NOAA) AVHRR were used. To analyze the relationship between RF and
NDVI values, data collected from 1982 through 2004 were used. Those
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years were selected because we found complete data sets for both RF and
imageries during those time periods.

There are over 600 rain gauge stations (Figure 1) found in Ethiopia that are
classified into four different classes as synoptic, principal, 3%, and 4™ class
stations (NMSA, 2001). For the correlation analysis between RF and NDV]I,
all of the four class stations were used. Average RF data from 1982 — 2004
were calculated for each 2 x 2 degree grids (Figure 3). For each of these
grids one average RF value was calculated.

For the Standard Precipitation Index (SPI) analysis a total of 40 stations
were selected. The spatial distributions of the selected stations are shown in
Figure 2. For the remote sensing part, satellite images from MSG and
NOAA AVHRR were used. From MSG 12 channels, we used channels 1
and 2 for detecting vegetation condition. These two visible channels are
well known from similar channels to the AVHRR instruments that are on

the NOAA satellites and can be used in combination to generate vegetation
indices such as NDVI (EUMETSAT, 2005).

Figure 1. Distribution of meteorological stations in Ethiopia
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Figure 2: Distribution of selected meteorological stations for SPI analysis

Source: Authors’ Own Construction, 2010

Methods

Ethiopia is a country with heterogeneous ecosystem. This heterogeneity is
mainly attributed to the variability in elevation and topography. This causes
short distance variability and changes in both RF amount and distribution.
The number of rain gauges in Ethiopia is small and unevenly distributed
(Figure 1). Therefore, in this research for maximizing the homogeneity of
the area and reducing the error due to scarcity of RF gauges in the country,
we produced a total of twenty-one 2 x 2 degrees grid. The historical average
RF gauge data and NOAA AVHRR NDVI data inside these grids were
calculated. To observe the relationship between RF and NDVI, the RF
recoded by all stations inside the grids were averaged from 1982 to 2004
and an average point data was generated. The same procedure was followed
for the NOAA AVHRR NDVI values of the 2 x 2-degree grids. The
correlation and scatter plots of these analyses are presented in Figure 6. The
RF patterns inside these grids were also analyzed separately (Appendix 2).
From this analysis different patterns were observed for different parts of the
country. All the patterns observed are presented in Appendix 2.
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The RF pattern analysis was done with the intent of maximizing
homogeneity and control NDVI data for monitoring drought by comparing
current NDVI with historical NDVI values. These historical average values
of RF and NDVI are presented in Appendix 1.

Figure 3. Map of Ethiopia with 2 x 2 degree grids
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SPI and Dev-NDVI for Monitoring Drought

Using the 40 selected stations (Figure 2), three-months SPI values were
calculated for two time periods, 1984 and 2009. The three-month SPI was
used because the three-month SPI calculated for October can use the
precipitation total of August, September, and October, which are peak
growing and/or maturity period of plants. This was also done with the
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assumption that later on we can match the three-month SPI values with
Dev_NDVI values. As a single numeric value, the SPI can be compared
across regions with markedly different climates (Ntale and Gan, 2003). In
this research, since the cumulative precipitation was not normally
distributed, the data was transformed to a normal domain to standardize the
drought index. Using the stations data (Figure 2), the three-month SPI was
calculated using equation 1 (McKee et al., 1993). After getting these point
data for the selected stations, ordinary kriging method was used for
interpolating the values for the whole of Ethiopia.
P, -P

SPJ = —L—_mem (1)
Ly

where SPI is the standard precipitation index, P, is observed cumulative
rainfall at a given time scale, P, is long-term mean rainfall of a given

time period, and s is the standard deviation of the past rainfall record of a
given time scale.

In the remote sensing imagery analysis part, [LWIS 3.6 software was used.
The NDVI data from NOAA were used after preprocessing with the
recommendation made by the data sources in the Meta Data details.

The 10-days images of MSG (1-10 October 2009) were imported to ILWIS
raster image format using the “Multiple times in one file” option. This
means that we had all 10 bands stacked (map list) together and made ready
for the NDVI calculation. The raw data downloaded from MSG were pre-
processed and the NDVI values were calculated using equation 2. During
the analysis, cloud-contaminated pixels were removed from each individual
image by examining the reflectance and temperatures. The daily NDVI
values of MSG were aggregated on a dekadal basis. In a year, there are 36
dekads (one dekad is equal to 10 days).

The deviation of normalized difference vegetation index (Dev_ND-VI) was
calculated after processing the two datasets separately (NOAA historical
NDVI and MSG NDVI data). Since the two data sources were found to
have different resolutions, the MSG data was re-sampled to 8 km (to the
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spatial resolution of NOAA AVHRR data). After importing the three-band
image data to ILWIS 3.6 raster format, a script was written for calculating
the Dev_NDVI.

Dev_NDVI is calculated using Equation 3.

NDVI = M (2)
pmir + )orcd

where p,,, (0.4-0.7 mm)and p,, (0.75-1.1 mm) are reflectance in red and
near-infrared bands of the satellite images.

Dev _NDVI = NDVI _i— NDVI _Mean _i 3)

where NDVI _i is the actual dekad (10-day composite) NDVI from MSG
satellite and NDVI _Mean _i is the long-term mean for the same-dekad
NDVI from NOAA satellite.

Results and Discussions

Rainfall Pattern in Ethiopia

According to Verdin et al. (2005), the RF seasons for the country as a whole
are March-May (locally called ‘Belg’), and June-September (locally called
‘Kiremt’). They also indicated that most of the rains in Ethiopia come in the
period March to September, with a pause in many parts of the country
around the end of May or beginning of June. The ‘Belg’ rains come in
March-May, and the ‘Kiremt’ rains in June-September. A FEWS NET
(2003) study also showed that April-May RF totals could explain 50% of
the variance of long-cycle water requirement satisfaction index, revealing
that this is a critical stage when rainfall deficits can negatively impact yields
of crops harvested in September—December.

In our study, the overall monthly average RF pattern analysis showed that

there is a difference between the different grids (Appendix 2). From this

analysis, four major different patterns were identified. The first pattern is

the one with high average RF during July and August. In this pattern, the

rain starts in March with gradual increase and reaches the maximum in July
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and August. This pattern is presented on Figure 4a using grid [35, 11]. The
second pattern has high average RF during July and August and a secondary
RF during March, April and May with highest average RF in April. This
pattern is presented on Figure 4b using grid [41, 13]. The third pattern has
high average RF during April and May and a secondary RF during
September, October and November with highest average RF in April. This
pattern is presented on Figure 4¢ using grid [39, 7]. The fourth pattern has
RF throughout the year with relatively low average RF during December,
January and February. This pattern is presented on Figure 4d using grid [35,
7]. The overall monthly average RF analysis for Ethiopia using the 21 grids
is presented in Appendix 2 and the spatial distributions of the four RF
patterns are also presented in Figure 5.

Results from both Verdin et al. (2005) and FEWS NET (2003) are not
refined enough to develop a practical drought monitoring system in
Ethiopia. Compared to these coarse classifications, our approach classified
the country temporally and spatially (Figures 4 and 5). In our research we
delineated the RF pattern in the country (Figure 5) and our aim was to
develop a drought monitoring system specifically for the localities based on
their RF patterns. The four patterns identified in this research are the basis
for developing drought-monitoring system using the satellite data in our
subsequent research.
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Figure 4: Average RF for Ethiopia: pattern 1 (a), pattern 2 (b), pattern 3 (c)
and pattern 4 (d)

x e b =
Grid [35, 1] ' Grid [41,13]

o 400 50
IE 300 40 |
B L G |
1 - .
I3 ol 0

Jan Fob Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul AugSepOct Nov Dec

Maonths of the year Monthsof the year
- a - ) b

! Grid [39, 7] \\ Grid [35, 7]
| |
| =
| 'sm
| &so
| »
i 2
| Jan Fab Mar Apr May Jun Jul Aug Sep Oct Nov Dec g J8n Feb Mar Apr May Jun Jul Aug Sep Oct Now Dec
: Monthsof the year Wlonthas of the year
— ————————————————— C 1

Source: Authors’ Own Construction, 2010

78




Ethiopian Journal of Development Research Vol. 34, No. 1, April 2012

Figure 5. The four average RF patterns using all RF gauges inside the 2 x 2
degree grids in Ethiopia, 1982 - 2004
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Relationships between RF and NDVI

From the analysis of the relationship between average RF and average
NDVI for 12 months, there were relatively high R* values for rainy months
(Figure 6) as expected. For dry months, there were low relationships (with
R? values of less than 0.5). The maximum R? values recorded were for May
(R* = 0.7613) and September (R* = 0.7698) and the minimum valuzes were
in February (R* = 0.2172) and November (R* = 0.2095). r!'he R valuc:‘.s
showed a gradual increase from February to May, with a maxnmum.value in
May; it decreased in July, and then increased again in September (Figure 6).
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The result showed that the main rainy months, which start in mid-June and
end in mid-September, have strong relationship with NDVI values. From
these analyses, it was found that the decrease or increase in RF value could
be tracked using NDVI values.

The overall pattern indicates that the correlation between RF and NDVI is
low during dry months. It starts to increase when the rain starts, and reaches
maximum when plants are in vigorous growing stages. Tadesse et al. (2005)
categorized the plant growing seasons into three (early growth, peak growth
and harvest) for modeling and predicting drought related vegetation stress.
Then, they built regression tree models for each of the three phases. In our
research, we have not been limited to the vegetation growing seasons.
Instead, we used the monthly average values throughout the year.

Figure 6: Scatter plots showing the correspondence between the average
NDVI and RF, 1982 to 2004
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Figure 6... cont'd
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NB. The numbers 1-12 correspond to January-December.
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Spatial Analysis of Drought in Ethiopia

The overall analysis of the 1984 and the 2009 drought showed that the 1984
drought was more severe compared to the 2009 drought. In the 1984
drought, moderate to extreme drought patterns across the central and
southwestern regions of Ethiopia were observed. Extremely dry classes
were observed in the central, northeast and southwestern corner of the
country (Figure 7). The severely dry classes were observed in the central
and southwestern part of the country.

In 2009, severely dry, moderately dry, near normal and wet categories were
observed. In 2009, the severe drought class was observed in relatively
smaller areas (i.e., central, eastern and southern part of the country) than the
1984 drought (Figure 8).

Figure 7: Spatial distribution of the 1984 drought in Ethiopia
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According to McKee et al. (1993), SPI >=2 means extremely wet
1.99>=SPI>=1.0 means very wet or moderately wet; 0.99 >= SPI >=-0.99
means near normal; -1.0 >=SPI>=-1.49 means moderately dry; -1.5 >=SPI
>=-1.99 means severely dry; and SPI < -2.0 means extremely dry. Based on
this standard classification of drought, the 1984 drought was more severe
compared to the one in 2009. The NMSA (1996) also indicated that the
1984 drought was one of the worst droughts in the 1980s, in Ethiopia.

Figure 8: Spatial distribution of the 2009 drought in Ethiopia
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NDVI and Deviation of NDVI for Spatially Locating Drought

In this section, we present the status of drought conditioqs in October 2099
using the NDVI parameter. This analysis was also primarily conducted with
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the aim of testing the applicability of MSG data for spatio-temporal drought
monitoring. The results were obtained by using first dekad of October 2009
MSG data and the long-term average NOAA AVHRR NDVI data.

The actual drought condition was determined by comparing the NDVI for
the first dekad of October 2009 with the long-term mean NDVI using
NOAA satellite data. Our results show that approximately 40% of the area
exhibited negative deviation (see Figure 9). This indicates that drought
conditions were observed in 2009 in different parts of Ethiopia. These
results align with recorded RF in 2009 in most parts of Ethiopia, which
show that the rainfall amounts recorded were below the overall average

(FEWS NET, 2009).
Figure 9: Dev_NDVI spatial distribution
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The comparison of the SPI and Dev_NDVI maps also showed that there are

some localities where similar patterns were observed. The two hot spots

observed in the northwestern and western parts of Ethiopia from the SPI

map were also observed in the Dev_NDVI analysis output map (Figure 10).
84



Ethiopian Journal of Development Research Vol. 34, No. 1, April 2012

There is also a difference in the two maps in showing the intensity of
drought. The SPI drought intensity shows the hot spots and the Dev_NDVI
map shows the pixel level deviations. The Dev_NDVI drought intensity
map is continuous compared to SPI map. This difference is attributed to the
number of stations (only 40 stations) used for the SPI value interpolation.

From our analysis (pixel level comparison of SPI and Dev_NDV]I), it can be
observed that the drought identified as 'severely dry' in 2009 by SPI
parameter (Figures 8) is related to high Dev_NDVI values (see Figure 10
and 11). Specifically, the two zones shown in Figure 10 are Awi Zone in
Amhara Region and Agnuak Zone in Gambella Region. In these zones,
drought pixels were reported both by SPI and Dev_NDVI parameters
(Figure 11). Therefore, it might be possible to say that with some
calibration and validation of the two parameters, it is possible to use
Dev_NDVI for identifying drought incidence.

Calibration and validation of the Dev_NDVI parameters for identifying
drought incidence in the different RF pattern areas is the future research
agenda for using satellite data for drought monitoring. From Figure 11
(pixel level comparison of SPI and Dev_NDVI), it could also be observed
that a Dev_NDVI of one pixel is related to its neighboring pixels and it
might be possible to estimate or develop a mathematical function for
identifying and modeling drought objects. The next step in this research is
to estimate or develop a mathematical function to characterize drought
pixels from non-drought pixels. After having the appropriate function, an
algorithm can be developed to automate the process of identifying and
modeling drought pixels from high temporal resolution MSG satellite
imagery.
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Figure 10: Comparison of SPI and Dev_NDVI maps, October 2009

Comparison of SPI and Dev_NDVI far October 2009 Drought

M a 43 o -

‘ X Legend
*.‘@' SP1

W ioh 190

Fo

. Low -1
| ETH_Zones

M k) @ a -
» Legend

= @ 2 Dev_NDVI :
¥ T ioh 0.385

-Lo« 053

%3 'T___ ETH_Zones

i e
Ly
i LS
s iy
R
L] 150 300 00
— L2
v L] Wi 20 -
— L2y
] i @ a & = T 3 4 - o -

Source: Authors® Own Construction, 2010
NB. The arrows show a drought intensity using both SPI (left) and Dev_NDVI (right)

parameters

Figure 11: Pixels level comparisons of SPI and Dev_NDVI.
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NB. The arrow shows a drought intensity using both SPI and Dev_NDVI parameters
during October 2009 in Gambela Region, Agnuak Zone.
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Conclusions

The focus of this research was to characterize and identify drought
incidences using both historic RF data and satellite images. NDVI and
Dev_NDVI data from satellite sources were analyzed and compared with
the historical RF records in forty stations. In this case the RF records were
used as control parameters for the satellite source data. The relationship
analysis between RF and NDVI showed that there are high R? values in the
main rainy months. Overall, interesting results have been achieved in
characterizing and identifying drought incidence using both historic RF data
and satellite images data sources. Based on this study, it is possible to use
the near-real time MSG and historical NOAA AVHRR NDVI and
Dev_NDVI data with some calibration and validation to identify and predict
drought incidence in advance and take appropriate actions for saving
drought victims.

The results of this study may help decision makers to use advanced satellite
technology for effective drought monitoring and early warning systems in
various regions. Integrated with appropriate policies, these early warning
systems can help to prevent famine and starvation in food-insecure regions.
In the past, satellite technologies have primarily been used in areas of
meteorological applications. In this research, the main emphasis is on
mining knowledge (e.g., pattern recognition) from satellite images for
drought hazard assessment and saving the lives of individuals who are
affected by recurring droughts. The findings of this research can alsp assx_st
decision makers in taking appropriate actions in time to save lives in
drought-affected areas using advanced satellite technology.
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Appendices

Appendix 1: Average monthly RF (MM) and NDVI data from 1982-2004

Grids |ltems (Months of the year
measured for|

the grids Jan |Feb Mar [Apr |May [un [ul |Aug [Sep [Oct [Nov |Dec

37,15 |Average RF |1.82 |4.68 (13,74 [33.22 (89,11 [165.87[321.11/296.58/132.95/53.99 |14.503.87

Average 0.28 (0.25 [0.23 022 022 [0.29 [0.39 [0.50 [0.54 [0.48 [0.39 [0.32
NDVI

37,13 |Average RF [1.52 [2.74 |11.40 [27.22 [73.24 [173.30{359.76/335.97[161.18[75.71 {14.4013.80

Average 0.31 [0.27 10.25 [0.25 [0.24 [0.30 [0.38 [0.50 [0.55 [0.51 (0.43 0.36
INDV1

39,13 |Average RF 20.673!.96r63.35 77.43 [52.81 [25.86 [211.84[231.38/94.81 [34.81 [16.34{20.55

QVcrage 0.24 1023 j0.24 027 [0.25 022 (022 030 [0.34 (0.32 [0.29 10.26
DVI

41,13 |Average RF )4.13 6.54 [19.50 [25.93 [8.51 [2.24 [26.27 J40.04 [19.34 [8.78 [3.97 |1.58

Average 0.16 [0.16 [0.16 [0.16 [0.12 f0.11 [0.10 [0.13 [0.13 (0.13 [0.14 |0.14
INDVI

35,11 |Average RF [5.72 |5.59 [32.31 [63.94 |196.36 311.71/350.32{345.69315.76{138.25[32.18{11.93

Average 0.41 [0.36 1035 [0.40 f049 (.61 [0.66 [0.68 [0.70 [0.68 [0.60 [0.51
INDVI

B7,11 |Average RF [13.65[22.47[53.97 [73.84 [101.42(166.72/299.30[294.83(169.15/68.61 18.34{13.82

Average 0.35 030 029 032 035 [0.39 [0.44 [0.53 [0.59 [0.60 0.50 [0.42
NDVI

39,11 |Average RF  [30.81}40.49}81.50 100.3468.61 54,08 237.480275.39115.6945.21 [22.73(25.29

91



Normalized Difference Vegetation Index ...
Getachew, Tsegaye, Solomon, Shawndra and Yitaktu

Appendix | ... cont’d

Average 0.28 10.27 0.30 033 0.31 [0.28 [0.29 |0.40 [0.45 [0.42 [0.36 [0.31
NDVI

4111 |Average RF [21.17]27.15[70.53 |143.35/87.59 149.72 [91.31 [121.92/102.84|48.47 |15.58/12.49
Average 0.21 1020 0.21 0.24 1025 023 [0.22 [0.25 [0.27 [0.27 [0.24 |0.22
NDVI

339 |Average RF [20.67)31.96163.35 [77.43 {52.81 [25.86 [211.84]231.38/94.81 {34.81 [16.34120.55
Average 0.36 10.32 10.35 045 1049 041 032 [0.31 [0.34 043 [0.48 [0.43
NDVI

35,9 |Average RF [30.37]31.40187.92 [131.40{220.32 [273.55[279.94{284.991247.47]155.88/55.51{36.34
IAverage 0.55 0.51 0.53  10.59 [0.63 [0.66 [0.64 0.65 10.67 [0.70 [0.67 |0.62
INDVI

37,9 |Average RF [20.33[39.23/66.44 104.51{101.60 [115.02{170.32{174.60{110.88/60.76 [17.16/13.80
Average 0.35 0.32 0.33  10.38 (041 044 [0.44 049 [0.55 [0.56 [0.48 [0.41
INDVI

39,9  |Average RF |18.18[35.55/69.24 [112.70{88.54 [73.76 166.02(178.17]106.32/68.98 122.45[17.65
Average 0.34 031 033 039 1043 043 [041 [046 [0.50 [0.51 Jo.47 [0.40
NDVI

41,9 Average RF [17.67[28.12}55.74 [110.92/81.16 |54.44 62.24 [72.49 [88.60 [42.55 |15.35/5.16
;\r';l\l;i}ge 025023 026 1033 039 j0.33 026 025 [0.29 [0.35 [0.35 [0.30

43,9 [Average RF [5.38 |4.80 (18.03 [82.56 [90.88 |11.33 3.02 ﬂ8.26 51.37 |63.18 {11.80{3.62
Average 0.19 10.17 0.18 022 026 (022 [0.16 [0.15 [0.17 fo.22 Jo.24 [0.22
INDVI

45,9 [Average RF .41 391 [17.02 7933 |50.83 1.23 1032 045 [13.55 [71.19 [35.77]3.31
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Average 021 [0.20 0.19  j0.21 (023 j21 [0.17 fo16 [0.17 Jo.21 j0.25 [o.24
NDVI

357 |Average RF [43.67[36.70(110.03 [195.73[209.59 [173.94]180.33179.29/177.06/160.1596.05/63.60
Average 1042 [0.38 [0.42 [0.52 [0.56 (0.53 [0.50 [0.49 [0.49 [0.50 [0.50 [0.49
INDVI

37,7 |Average RF [34.34139.63[85.75 [171.26163.37(92.19 [87.17 [100.26(111.02{124.95162.03{35.37
Average  0.41 1036 J0.37 045 [0.50 [0.48 [0.43 [0.43 0.4 [0.48 [0.50 J0.48
NDVI

39,7 |Average RF [19.1029.69(72.54 [204.01{180.20 43.35 [39.28 (41.34 [86.56 |177.13}69.64128.38
Average  [0.36 032 [0.35 045 (049 [0.41 [0.32 [031 (034 043 [0.48 0.43
NDVI

43,7 |Average RF [1.14 |6.77 }40.90 [64.84 [25.53 [1.59 [0.26 [3.01 [36.07 [56.18 [19.12}2.89
Average  [0.19 [0.17 |0.17  [0.21 [0.24 [020 [0.16 [0.15 [0.16 [0.20 [0.24 [0.22
INDVI

B7.5  |Average RF  [26.4828.59[77.32 [153.4591.70 [13.56 [10.03 [7.70 [34.74 [84.38 42.7426.75
Average 025 [0.23 025 [0.31 [0.33 028 [0.22 fo21 020 (023 [0.27 0.28
NDVI

39,5 |Average RF {16.88[21.07145.56 [147.15/91.37 |17.33 [7.63 [5.42 [12.76 [85.44 80.21128.07
Average  0.27 [0.25 p.27  J0.35 [0.37 30 f023 f0.22 0.23 (028 [0.35 [0.33
NDVI

Source: Authors’ Own Construction, 2010
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Appendix 2: Rain fall pattern for the 2 x 2 degree grids
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