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Abstract 

This study focuses on daily extreme climate indices and their underlying 

causes, rather than traditional average climate investigations. The primary 

aim is to effectively strategize adaptation measures for climate extremes and 

ensure food security. The research was conducted in the Borena Zone, an 

area that has experienced recurrent extreme weather events, particularly 

droughts, over the past few decades. Utilizing daily rainfall and temperature 

data sourced from the National Meteorological Agency (NMA) spanning 

from 1981 to 2020, the study examines the variability of climate extreme 

indices within the Borena Zone. In addition to mean maximum and mean 

minimum temperatures, six extreme temperature indices and five extreme 

rainfall indices were employed for a comprehensive analysis. The results 

from temporal analysis indicate that maximum daily maximum temperature 

(TXx), maximum daily minimum temperature (TNx), minimum daily 

maximum temperature (TXn), and maximum daily minimum temperature 

(TNn) exhibit significantly increasing trends ranging from 0.016 to 

0.053°C/year. Conversely, the extreme temperature indices for cool days 

(TX10) and cool nights (TN10p) show decreasing trends ranging from 0.058 

to 0.406%/year. The spatial analysis of extreme indices also reveals an 

overall increase in temperature across the zone, confirming a higher 

warming trend in the area. Among the extreme rainfall indices, the total 

precipitation (PRCPTOT) shows a very significant increasing trend (p = 

0.006) of 3.65 mm/year. The number of very heavy rainfall days (R20mm) 

and the number of very wet days (R95p) also exhibit significant increasing 

trends, ranging from 0.05 to 2.044 mm/year. Conversely, continuous wet 
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days (CWD) show a decreasing trend, while continuous dry days (CDD) 

demonstrate an increasing trend. The spatial analysis of rainfall indices 

corroborates the findings from the temporal analysis. Correlation analysis of 

daily rainfall with global indices such as Sea Surface Temperature (SST) 

and Sea Level Pressure (SLP) reveals a significant positive correlation with 

consecutive dry days (CDD) and a negative correlation with consecutive wet 

days (CWD). The results of this study indicate warming trends in the area, 

accompanied by erratic rainfall patterns that significantly affect evaporation 

rates and various key sectors, notably rainfed agriculture, leading to 

increased drought conditions. 

Keywords: Climate indices, extremes, drought, temporal, spatial, Borena, 

Ethiopia 

 

1. Introduction 

Since the onset of the Industrial Revolution, climate extremes have 

increasingly affected various regions globally (McMichael, 2017). The 

impacts of global warming and other anthropogenic climate extremes have 

varied, causing significant harm to both the environment and human well-

being (Shivanna, 2022). Tropical regions are particularly vulnerable due to 

their geographic location and limited technological advancements to mitigate 

hydro-meteorological hazards (Sahani et al., 2019). Developing countries like 

Ethiopia have seen a marked increase in climate risk, driven by exceptional 

weather events and low adaptive capacity (World Bank, 2021). Due to its 

heavy reliance on rain-fed agriculture and natural resources, Ethiopia is 

among the nation’s most sensitive to climatic variability and change. Future 

projections indicate that hydro-meteorological hazards and temperature 

extremes will become more frequent and intense (Beyene et al., 2022; Adem 

& Amsalu, 2021; Damtew et al., 2022; Dendir & Birhanu, 2022). Rising 

temperatures, both currently and in the future, are attributed to excessive 

greenhouse gas emissions from various sources. For instance, the global 

average surface temperature is projected to rise by 2.6 to 4.8°C by the end of 

the 21st century, following an increase of 0.3 to 0.6°C during the 20th century 

(IPCC, 2007). Extreme weather and climate events negatively impact 

livelihoods and contribute to the overall decline of ecosystems. The most 
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significant shifts in surface temperature are expected to occur in Africa 

(IPCC, 2013).  

The sub-Saharan region has seen a significant increase in heat wave 

occurrences in recent years, with studies indicating a rise in frequency and 

intensity due to climate change (Lelieveld et al., 2022). These heat waves 

have profound impacts on the environment and public health, exacerbating 

existing vulnerabilities in the region. Increases in surface temperature can 

disrupt the hydrological cycle, affecting critical processes such as 

evapotranspiration and precipitation patterns. Recent literature highlights that 

climate change is leading to altered rainfall distributions and increased 

evaporation rates, which in turn affect water availability and agricultural 

productivity (Zhou et al., 2023; IPCC, 2023). This disruption poses 

significant challenges for food security and sustainable development in the 

region. 

 

The hydro-meteorological risks in the Horn of Africa are closely linked to the 

El Niño Southern Oscillation (Liebmann et al., 2014; Nicholson, 2017). 

Extreme climate events such as droughts and floods lead to severe 

consequences, including landslides, erosion, and reduced agricultural yields 

and water resources. Ethiopia's most crucial economic systems are 

increasingly vulnerable to climate variability and extreme occurrences, such 

as large floods and droughts, which severely impact people's lives, property, 

and natural resources (Adger et al., 2018). Significant portions of the nation, 

particularly the semi-arid and desert regions, are prone to high levels of 

climatic fluctuation and periodic droughts. Recent data indicate that the 

Borena Zone is one of the most drought-prone areas in Ethiopia (Ambelu et 

al., 2017; Bogale and Erena, 2022). 

 

When assessing the variation and trends of temperature and rainfall extremes, 

it is essential to understand the relationships between rainfall variation and 

global-scale climate indices (Sillmann et al., 2017), which are key drivers of 

regional climate variability. For example, the development of global climate 

indices can trigger atmospheric-oceanic anomalies in the tropical Pacific, 

affecting climate parameters worldwide, particularly rainfall patterns (Unal 

et al., 2012). In Ethiopia, rainfall variations are primarily influenced by the 
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seasonal migration of the Intertropical Convergence Zone (ITCZ) and the 

global climate system (Camberlin, 2009; Fazzini et al., 2015; Gleixner et al., 

2017; Korecha and Barnston, 2007). While previous studies (e.g., Alhamshry 

et al., 2020; Diro et al., 2011; Segele et al., 2009) have reported associations 

between SST and Ethiopian rainfall, they often had limited temporal coverage 

and did not focus on the rainfall extremes in southern Ethiopia. 

 

To address this gap, this study aims to investigate the association of various 

global climate indices with the variation of daily extreme rainfall indices in 

the Borena Zone, which is located in southern Ethiopia and frequently 

experiences extreme events and prolonged drought. In climate research, 

several studies have predominantly used annual and monthly mean average 

data, which can obscure significant variables that characterize extreme 

indices responsible for extreme events (Zhang et al., 2019). 

 

Therefore, extreme indices derived from daily climate data aim to provide 

unbiased insights from weather observations, enhancing our understanding of 

extremes that significantly impact various ecosystems. Unlike previous 

studies, this research offers new insights into the trends of daily extreme 

temperature and rainfall indices for the study area, utilizing an extensive 

climate dataset from 1981 to 2020. Accordingly, the main objective of this 

study is to evaluate recent changes in the temporal variation and trends of 

daily temperature and rainfall extremes, as well as the impacts of extreme 

climate change in the area. Additionally, it explores the teleconnections 

between local rainfall and global indices. The results could provide essential 

scientific information on historical climate change, which is valuable for the 

management of water resources and hydrological systems in the region.  

 

2. Materials and Methods 

2.1. Theoretical Framework 

The study of daily extreme temperature and rainfall indices is anchored in a 

robust theoretical framework that integrates various climate indices, 

statistical methodologies, and climate models to assess the impacts of climate 

change on weather extremes. This framework is vital for understanding how 

climate variability manifests through extreme weather events, particularly in 
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vulnerable regions such as Ethiopia. Climate Extremes Indices serve as the 

foundation for this framework. These standardized indices quantify 

temperature and precipitation extremes, allowing for meaningful 

comparisons across different geographical areas and time periods. According 

to the World Meteorological Organization (WMO), essential climate indices 

include metrics for extreme temperatures, such as the number of warm days 

or cold nights, and for precipitation, such as the frequency of heavy rainfall 

events (WMO, 2011). These indices help researchers to systematically 

evaluate changes in climate extremes over time. 

 

Statistical Methods play a crucial role in analyzing trends associated with 

these climate indices. Techniques such as linear regression analysis, time 

series analysis, and non-parametric tests are commonly employed to discern 

significant patterns and anomalies in extreme weather data (Mann, 1977; 

Wilks, 2011). By applying these statistical approaches, researchers can 

identify trends that may correlate with broader climatic shifts, thereby 

enhancing the understanding of how extreme events are evolving in response 

to climate change. Climate Models, including Regional Climate Models 

(RCMs) and General Circulation Models (GCMs), are integral to projecting 

future climate scenarios. These models simulate potential temperature and 

precipitation patterns under various greenhouse gas emission scenarios, 

providing insights into how climate extremes may change over time (IPCC, 

2013). By utilizing these models, researchers can assess not only the 

likelihood of extreme weather events but also their potential impact on local 

ecosystems and human livelihoods. 

 

Another critical aspect of the theoretical framework is the examination of 

teleconnections. These are the climatic links between global climate indices, 

such as the El Niño Southern Oscillation (ENSO), and local weather patterns. 

Research has shown that these teleconnections significantly influence rainfall 

variability and temperature extremes in regions like the Horn of Africa 

(Nicholson, 2017; Liebmann et al., 2014). Understanding these relationships 

is essential for predicting extreme weather events and preparing for their 

impacts. The framework also encompasses the impact assessment of climate 

extremes on socio-economic systems. This involves examining how shifts in 
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temperature and precipitation extremes affect agricultural productivity, water 

resources, and public health (Mastrorillo et al., 2016). Vulnerability 

assessments are particularly important, as regions that rely heavily on rain-

fed agriculture, such as Ethiopia, are more susceptible to the adverse effects 

of climate variability (Bogale & Erena, 2022). 

 

Finally, the theoretical framework emphasizes the need for developing 

adaptation strategies to mitigate the impacts of climate extremes. Effective 

adaptation measures may include improving water management practices, 

enhancing agricultural resilience through diversification, and implementing 

early warning systems for extreme weather events (Sahani et al., 2019). By 

integrating these strategies into policy and planning, communities can better 

prepare for and respond to the challenges posed by climate change. In 

summary, the theoretical framework for studying daily extreme temperature 

and rainfall indices is multifaceted, combining climate indices, statistical 

analysis, climate modeling, and socio-economic assessments. This 

comprehensive approach is essential for understanding the complexities of 

climate extremes and informing effective adaptation strategies in vulnerable 

regions. 

 

2.1. Data Source and Quality Control 

This study made use of gridded daily precipitation maximum and lowest 

temperature data from the National Meteorological Agency (NMA) within a 

period of the years 1981 to 2020. This gridded dataset combines locally 

calibrated satellite-derived data with integrated quality-controlled station data 

from the National Observation Network. This combined dataset employed the 

combined product shows improved quality over regions of the country where 

stations are sparsely distributed (Dinku et al., 2014; Esayas et al., 2018). 

Because it resolves a significant discontinuity seen in station data during a 

brief period, this data is recommended for use.  

 

In this study data quality control process of each time series was tested using 

RClimDex 1.1( Zhang and Yang, 2004). The quality control involves 

checking errors such as (𝑖) days with negative or greater than 500mm rainfall 

amount, (𝑖𝑖) minimum temperature equal to or greater than maximum 
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temperature, and outliers, which are values plus or minus four times standard 

deviation. Accordingly, a station with the best value data quality is considered 

in the study. After the quality control, the data was used for extreme analysis. 

2.1.1. Trend Analysis of Rainfall and Temperature 

The Mann-Kendal test was used to evaluate the trend of temperature and 

precipitation extremes indices. Mann Kendal ( Mann, 1945; Kendall, 1975) 

is the most robust tool for detecting trends because the method is less sensitive 

to outliers and skewed distributions within time series data (Wang and Swail, 

2001). In this study, the Mann-Kendal test was applied for temperature and 

precipitation data which are not always normally distributed (Yue and Wang, 

2004). The trend was tested by computing 𝑝-value at a 95% confidence level. 

The slope of temperature and rainfall extremes were determined using the 

non-parametric Sen’s slope estimator (Sen, 1968). It uses the median slope to 

assess the trend over time. Sen’s slope estimator is widely applied to quantify 

the slope of rainfall and temperature time series data. Both the Mann-Kendall 

test and Sen’s slope estimator were used to compute trends in hydro-

meteorological series. Detailed descriptions of Mann–Kendall and Sen’s 

slope estimation can be found in the related studies (Li et al., 2018; Worku et 

al., 2019). 

                     𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 )                  

Where N is the number of data points. Assuming(𝑥𝑗 − 𝑥𝑖) = 𝜃 , the value of 

𝑠𝑔𝑛(𝜃) is computed as follows: 

𝑠𝑔𝑛(𝜃) = {

1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

}                   

Where: -Seasonal and annual values in years j and 𝑖, 𝑗 > 𝑖, respectively.(𝑥𝑗 −

𝑥𝑖) is the signum function. The test statistic (S) has been assumed to be 

asymptotically normal, 𝐸(𝑆) = 0. The equation indicates the increasing and 

decreasing trend of the data(M.G. Kendall, 1975). 

The variance statistic is also calculated as follows: - 

             𝑉(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑘(𝑡𝑘 − 1)(2𝑡𝑘 + 5)

𝑔
𝑘=1 ]          

where n is the number of data points, g is the number of tied groups (a tied 

group is a set of data having the same value), and tk is the number of data 

points in the kth group. The standard test statistics Z is calculated as follows. 
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              𝑍𝑠 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

0,    𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
 , 𝑆 < 0

              

The 𝑍𝑠 Value is used to evaluate the significance of the trend variation in 

terms of decreasing and increasing trends. In the two-sided test under a 

significant 𝛼 level, if |𝑍𝑠| < 𝑍
(1−

𝛼

2
)
,   the hypothesis that the sequence 𝑋𝑖  has 

no trend is accepted, but if  |𝑍𝑠| > 𝑍(1−𝛼
2
)
,   the hypothesis is rejected and the 

sequence has either an increasing or decreasing monotonic trend. 𝑍
(1−

𝛼

2
)
  is 

the standard normal distribution value when the probability exceeds 1 −
𝛼

2
 . 

In this study, a significance level of 𝛼 = 0.05  was adopted; thus, 𝑍
(1−

𝛼

2
)
=

1.96. 

2.1.2. Sen’s slope estimator 

Sen’s slope estimator the direction and its magnitude (Kocsis et al., 2017) in 

meteorological time series (Chattopadhyay and Vennila,2015; Pal et al., 

2017). It is the non-parametric method that can calculate the change per unit 

time. This method is used to determine the linear trend of the time series (Pal 

et al., 2017b). In this method, the slopes 𝑇𝑖 of all data pairs are calculated as 

follows: 

𝑇𝑖 =
𝑥𝑗 − 𝑥𝑖
𝑗 − 𝑖

 

For 𝑖 =1, 2,…, N 

Where  𝑥𝑗 𝑎𝑛𝑑 𝑥𝑖  are data values at a time 𝑗 and 𝑖(𝑗 > 𝑖), respectively. If there 

are n values 𝑥𝑗  in the time series and obtained N=n(n-1)/2 slope estimates 

𝑆𝑖.The median of these N values of  𝑇𝑖 is Sen’s estimator of slope, which is 

calculated as 

𝑇𝑀𝑒𝑑 = {

𝑇𝑁+1
2
      𝑁 𝑖𝑠 𝑜𝑑𝑑 

1

2
(
𝑇𝑁
2
+
𝑇𝑁+2
2
)  𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 

A positive value of Ti indicates the is an increasing and a negative value of 

Ti gives a decreasing trend in the time series (Mondal et al., 2012).  
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2.1.3. Evaluation of Extreme Indices  

A statistical examination of variations in the dependent climatological 

characteristics, including time series analysis and comparison, extremes, and 

trends, is made possible by extreme climate indices. The RClimDex 1.1 

software package was utilized to assess the extreme indices of daily rainfall 

and temperature time series, focusing on their trend and variance. The Expert 

Team on Climate Change Detection Monitoring Indices (ETCCDMI), among 

other worldwide research organizations, created the analysis package for 

trend and variability evaluation of time series temperature and rainfall data 

(WMO, 2009). You can get RClimDex, an easily navigable R-based program, 

from http://etccdi.pacificclimate.org/. Shanghai et al. (2011). Out of the 27 

core indices that RClimDex computes daily, the most pertinent 10 

temperature indices and 10 precipitation indices for this study. 

 

Table 1: List of temperature and rainfall indices 

 
Max. = maximum, Min. = minimum, Tmax = maximum temperature, Tmin = 

minimum temperature, PRCP = precipitation, and RR=daily precipitation. 

 

2.1.4. Global-climate indices 

Several large-scale ocean-atmospheric indices have been identified to have 

teleconnections with the variability of rainfall in Ethiopia (Degefu and 

Bewket, 2017; Zeleke and Damtie, 2016). Among these climate indices, Sea 

level pressure (SLP) is increasing/ decreasing in atmospheric pressure at sea 

level, which can disclose useful information on atmospheric circulation, 

bringing about wetter and drier conditions. Changes in Sea Surface 
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Temperature (SST) can also generate a difference in the heat-flux field, 

bringing about anomalies in atmospheric circulation and rainfall patterns 

(Copsey et al., 2006). This study selected the most important global climate 

indices to estimate their association with local precipitation indices. These 

are: - 

a) The global SST anomalies, including the Dipole mode index (DMI), the 

anomalies of SST between the Western (10°S-10°N and 50°-70°E) and the 

Southeastern (10°S-0° and 90°-110°E) the equatorial Indian Ocean. The 

Pacific Decadal Oscillation (PDO) index is the leading principal component 

of Northern Pacific monthly SST variability (poleward of 20° N in the Pacific 

Basin), El Niño–Southern Oscillation (ENSO) represented by averaged Niño 

SST indices, Niño 1+2, Niño 3 (90–150° W and 5° N–5° S), Niño 3.4, and 

Niño 4 (150° W– 160° E and 5° N–5° S), and 

b) Atmospheric pressure at sea level or sea level pressure (SLP), including 

the Southern Oscillation Index (SOI), and the North Pacific Index (NPI), are 

the area-weighted SLP over the region 30–65° N, 160° E–140° W, the Trans-

Polar index (TPI), and the North Atlantic Oscillation (NAO).  

The data were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) http://www.cgd.usar.edu.cas/catalog/climate/TNI_ 

N 34 index .html.  

2.1.5. Correlation of daily extreme indices with global atmospheric 

circulation 

In this study, the Pearson Correlation Coefficient (r) was used to evaluate the 

link of daily rainfall extreme with global atmospheric indices at a 95% 

confidence level. Pearson correlation was used to evaluate linear association 

between two variables 𝑥𝑖 and 𝑦𝑖.The Pearson correlation (r) is given by: To 

prove the formula for the correlation coefficient, we start with its definition 

and derive it accordingly,  

Cov(X, Y) =
1

𝑛
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

 

Var(X) =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑛

𝑖=1

2 

http://www.cgd.usar.edu.cas/catalog/climate/TNI_%20N%2034%20index%20.html
http://www.cgd.usar.edu.cas/catalog/climate/TNI_%20N%2034%20index%20.html
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Var(Y) =
1

𝑛
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 

𝑟 =
{Cov}(X, Y

√𝑉𝑎𝑟 (𝑋). 𝑉𝑎𝑟(𝑌)
 

 

𝑟 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
𝑛
𝑖=1

 

Where n is the number of observations, 𝑥𝑖,and 𝑦𝑖the variable and �̅� and �̅� are 

their mean, respectively.  

o If X and Y are perfectly positively correlated, r = 1 

o If there is absolutely no association, r = 0 

o If X and Y are perfectly negatively correlated, r = -1 

o Thus -1 ≤ r ≤ 1. 

o The closer r is to +1 or -1, the greater is the strength of the 

association (Freedman, et al., 2007). 

3. Results and Discussion 

3.1. Temporal and Spatial Trends of Daily Extreme Temperature and 

Rainfall Indices 

3.1.1. Temporal Trend of Daily Extremes Temperature Indices 

Fig.1 depicts, the Borena Zone underscores the complex of maximum and 

minimum temperatures, the dynamics, and their increase of them. 
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 Figure 1: Extreme temperature indices of (T-max mean and T-min mean) 

The straight solid line in the figure is the linear trend for each variable for the 

basin, whereas the dashed line is the moving average. The mean maximum 

temperature of the area observed an increasing trend with a positive slope, 

and the annual TMAX-mean increased by 0.0570C/year. The moving average 

also depicts the higher variation or anomalies of the maximum temperature in 

the area from 1981 to 2020. This consistent upward trajectory suggests a shift 

in climatic conditions that may have profound implications for local 

ecosystems and agricultural practices. Similarly, the mean minimum 

temperature in Borena also exhibits a notable upward trend, particularly 

exaggerated from 2010 onwards, with an annual increase of 0.043°C per year 

throughout the study period. This annual result is more analysis taken from 

daily extreme values. Accordingly, the daily maximum temperature (TXX) 

of Borena shows an increasing trend. The moving average also shows an 

increasing anomaly except for 1986 and 2018. These anomalies may reflect 
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the influence of specific climatic events or fluctuations that warrant further 

investigation. The daily minimum temperature (TNX) trend of the area 

showed that increasing trend and the anomaly also observed an extreme 

increase, particularly in 2018. In agreement with this study's results’ 

researchers (Asfaw et al., 2018; Belay et al., 2021; Mengistu and Haji, 2015) 

done on the area reported the highest increase of both maximum and 

minimum temperatures. These studies corroborate the observed warming 

trends in current and future temperatures in the region, emphasizing the 

urgency of addressing climate change impacts. 

 



  

Ethiopian Journal of Development Research            Volume 47            Number 2           October 2025 
 gg 

348 

 

 
Figure 2: Extreme temperature indices of (TXn, TNn, TN10p and TX10p) 

 

Figure 2 presents the extreme temperature indices, including the monthly 

minimum value of daily maximum temperature (TXn). The straight solid line 

in the figure is the linear trend for each variable for the basin, whereas the 

dashed line is the moving average. The Monthly minimum value of the daily 

maximum temperature (TXn) observed an increasing tendency, and the 

moving average shows a decreasing trend. This discrepancy suggests that 

while the coldest day temperatures are generally rising, there may be periods 

of fluctuation that require closer examination. Thus, the TXn or the coldest 

day significant variation has been observed or considerable anomalies 

recorded in the study area (Fig.2). Similarly, research done by (Mekasha et 

al., 2014) noted a similar trend as both increasing and decreasing trends have 

been recorded. The coldest night (TNn) showed a very significant increasing 

trend, and the anomalies of the moving average observed a significant 
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increasing trend, particularly in the 2019 year. Esayas et al. (2018) reported a 

similar result that shows an increase in the coldest day (TNn) in southern 

Ethiopia. Both cool day (TX10P) and Cool night (TN10P) depicted a very 

decreasing trend that agreed on the increment of warm night and warm day. 

This trend underscores a broader shift towards warmer nighttime 

temperatures, which can have critical implications for nocturnal ecosystems 

and energy consumption patterns. Supporting these findings, Damtew et al., 

(2022) stated the decline of cold extreme temperature indices in cool days 

(TN10p) and cool nights (TX10p). These extreme climate events make people 

suffer from continuous drought (Dejene et al., 2023). 

Overall, these results highlight the pressing need for adaptive measures to 

mitigate the impacts of increasing temperature extremes, particularly in 

vulnerable regions like Borena. Understanding these trends is essential for 

developing effective climate adaptation strategies that can enhance resilience 

among local populations. 

3.1.2.  Spatial Trend of Daily Extremes Temperature Indices  

 

 
Figure 3. Spatial variations of extreme temperature indices of TXx,  TXn,  

TNx, and TNn trends in °C/year of Borena for the years 1981-2020. 



  

Ethiopian Journal of Development Research            Volume 47            Number 2           October 2025 
 gg 

350 

 

The triangles and the down-arrow in the pictures indicate significant 

increasing and decreasing trends at the 5% level, respectively. In the northern 

humid and central moist part of the zone, the maximum value of the maximum 

temperature (TXx) shows a decreasing trend with 0.0120c/year. This decline 

may be influenced by localized climatic factors, including land use changes 

and variations in precipitation patterns. Conversely, in the central, the west 

semi-arid, and the east arid regions TXx trend value increased significantly 

(p<0.05) with 0.040C/year. The trend for the maximum daily minimum 

temperature (TNx) across the study area reveals an increasing pattern ranging 

from 0.041°C to 0.065°C per year. Such increases in TNx are critical, as they 

suggest a general warming trend that affects not only daily temperatures but 

also nocturnal ecosystems. The regional trends of the two indices, TXx and 

TNx, show stout increases trend. The percentages of cool days (TX10p) and 

cool nights (TN10p) showed strong variability that depicts the increasing and 

decreasing trend; however, both showed decreasing in the southern area in 

common (Fig.3). This decline in cool extremes is particularly concerning, as 

it may lead to reduced agricultural resilience and increased vulnerability to 

heat-related stress among local populations. Previous studies (Esayas et al., 

2018; Mekasha et al., 2014; Mohammed et al., 2022) on temperature extreme 

indices in the area confirmed the result obtained in this research. Increasing 

trend of warm extreme indices and decreasing trend of cold extreme indices 

(TN10p and TX10p) were observed. The consistency of these results across 

different studies highlights the reliability of the data and the urgency of 

addressing the implications of these temperature changes. The trends in mean 

annual maximum and minimum temperatures, along with various extreme 

temperature indices, confirm a pronounced warming trend in the area. 

Overall, the daily extreme temperature trends in the eco-environments of the 

study area indicate a rise in warm extremes and a decline in cold extremes. 

These shifts necessitate immediate attention to adaptation strategies that can 

mitigate the impacts of changing temperature patterns on local ecosystems 

and communities. 
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3.1.3. Temporal Trend of Daily Extremes Rainfall Indices 
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Figure 3: Extreme rainfall indices of (R20mm and R95p, CWD, CDD) 

Figure 4 illustrates the extreme rainfall indices, presenting both the linear 

trend and moving average for each variable in the basin. The number of very 

heavy rainfall days (R20mm) shows an increasing trend with a slope of 0.05 

mm/year. This upward trend indicates a potential shift in rainfall patterns, 

suggesting that heavy precipitation events may become more frequent in the 

region. However, the moving average showed the highest fluctuation of 

anomaly and almost below-average value except for the higher increase 

shown in 2018. The very wet day (R95p) observed a significant increasing 

trend of 2.044mm/year. This substantial increase may enhance the risk of 

flooding and soil erosion, particularly in vulnerable landscapes. The moving 

average depicted the strongest variation anomalies, and mainly in 1998 and 

2018, it showed the highest value above the average. Continuous wet day 

(CWD) value in the study period never showed an increasing or decreasing 
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slope; however, the moving average showed a variation and a decreasing 

trend since 2010. This decline in continuous wet days may have serious 

implications for water availability and agricultural productivity. On the 

contrary, the value of continuous wet days observed a decreasing trend of 

0.013 mm/year. The value of continuous dry days (CDD) also showed an 

increasing trend with considerable anomalies, particularly since 2016, when 

it was above average (Fig.4). The increase in CDD is particularly concerning 

as it suggests prolonged dry spells, which can exacerbate drought conditions 

in the region. Similar to these results, the study done by Dendir and Birhanu 

(2022); Kiros et al.(2017); Mohammed et al.(2022) in the same 

agroecological zone found the increment of R20mm, R95p, and the decrease 

of CWD as well as the increment of CCD in southern Ethiopia The emphasis 

on the recent increases in CDD and declines in CWD highlights the growing 

concern for drought occurrences in the area, necessitating urgent adaptive 

measures to mitigate adverse impacts on agriculture and water resources. 
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3.1.4.  Spatial Trend of Daily Extremes Rainfall Indices 

 

 

Figure 4: Spatial variations of rainfall extreme indices trends of R20mm 

(days/year), R95P(mm/year) both in mm/year, trends in CWD (Days/year), 

and trends in d CDD (days/year) of Borena for the duration of 1981-2020. 

Figure 5 illustrates the spatial trends of the extreme rainfall indices R20mm, 

R95p, CWD, and CDD across the Borena Zone. The triangles and the down-

arrow in the pictures indicate significant increasing and decreasing trends at 

the 5% level, respectively. The spatial trend of R20mm, R95p, CWD, and 

CDD in Fig.2.5 showed very different values in humid, moist, semi-arid, and 

arid regions of the Borena Zone. Accordingly, the R20mm value showed a 

significant (p=0.03) increasing trend in most parts of the study area with 

0.05mm/year. This trend suggests a potential enhancement in heavy rainfall 

events, which could impact local water management and agricultural 

practices. However, there is an insignificant decreasing trend observed in the 

southeast (arid) part of the zone. 
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The R95p index demonstrates a significant (p = 0.006) increasing trend of 

3.183 mm/year throughout the zone. Such an increase in extreme precipitation 

could exacerbate flooding and soil erosion risks, particularly in vulnerable 

landscapes. The continuous wet-day index (CWD) shows a decreasing trend 

of 0.013 days/year, with exceptions noted in the western semi-arid and 

northernmost regions, indicating localized variability in wet-day patterns. 

In contrast, continuous dry days (CDD) exhibit an increasing trend, except 

for the central moist regions. This increase in CDD points towards prolonged 

dry spells, which are concerning for water availability and agricultural 

productivity in the region. 

In line with this result, studies done by (Adem and Amsalu, 2021; Amsalu 

and Adem, 2009; Gemeda et al., 2022) found the erratic rainfall and the 

increment of warming conditions of the area caused extreme drought and 

other climate hazards. These findings underscore the urgent need for adaptive 

strategies to mitigate the impacts of these climatic changes on local 

communities and ecosystems. 
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3.2. Correlation of daily extreme indices with global atmospheric 

circulation 

Regional climate change, particularly the variation and change of daily 

extreme rainfall, is significantly influenced by global atmospheric climate 

indices such as Sea Surface Temperature (SST) and Sea Level Pressure (SLP) 

(Kebede and Bewket, 2009).  

 
Figure 5: The correlation of global indices (IOD, PDO, NINO 4, and Global 

SST) with daily extreme rainfall CDD, CWD, R20mm, and R95sp) of the 

Borena zone in the period of 1981 to 2020. 

 

Fig.7 shows the correlation between SST groups, which include IOD, PDO, 

NINO 4, and Global SST itself. Hence, Nino 4 and global SST had a negative 

correlation with CWD and showed a significant positive correlation with 

CDD (r=0.36 and 0.41) with a 95% confidence level. This suggests that as 

warm ocean temperatures increase, the occurrence of continuous wet days 

decreases, leading to dryer conditions. The remaining large-scale climate 

indices, IOD and PDO, showed almost the same pattern: There was a negative 

correlation with CWD and a negative correlation with extreme daily rainfall 

indices. This result exhibits a negative correlation with wet days, suggesting 

the decreasing extreme rainfall in the area. These findings indicate a 

concerning trend towards decreased wet days, suggesting a decline in extreme 
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rainfall events in the area. The positive correlation between CDD and the 

negative correlation with CWD showed the warmed or drought tendency of 

the study area. This pattern observed a tendency towards warming or drought 

events. This analysis of SST groups depicts the connotation between extreme 

rainfall indices and global climatic factors in the Borena zone showed 

different patterns. It observed a warming tendency as NINO 4 and global SST 

clearly correlate with more dry spells and fewer wet days. Furthermore, 

highlighting the trend toward warmer or drier conditions in the study area, 

IOD and PDO also contribute to this pattern by demonstrating negative 

associations with CWD and daily rainfall extremes. In agreement with these 

findings, studies done by  Beyene et al.(2022), Degefu et al.(2017), and 

Tashebo et al.(2021) stated that the recent global SST variation has led to a 

severe extreme impact in lowland pastoralist areas, including the Borena 

zone. 

 
Figure 6: The correlation of global indices (TPI, SOI, NPI, and NAO) with 

daily extreme rainfall CDD, CWD, R20mm, and R95sp) of the Borena zone 

in the period of 1981 to 2020. 

 

Figure 7 shows the correlation of sea level pressure (SLP), including TPI, 

SOI, NPI, and NAO. Accordingly, TPI had a negative correlation with 
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R20mm and R95p and made a positive significant correlation with CDD 

(r=0.435), which is responsible for the drying of the area. The SOI has a 

negative correlation with CWD and made positive correlation with CDD, 

R20mm, and R95p. The NPI had a negative correlation with CWD and made 

a positive correlation of R20mm and R95p. The NAO presents a positive 

correlation with CDD while correlating negatively with other daily extreme 

rainfall indices. This finding observed SOI, TPI, and NAO correlation values 

with daily rainfall indices of the area associated with prolonged dry spells, 

leading to warming (drought). It confirms the complex correlation between 

global climate indices and extreme daily rainfall indices that affect the wet 

and dry spells in the area. The correlation analysis of sea level pressure (SLP) 

indicators, including TPI, SOI, NPI, and NAO, with daily rainfall indices 

provides useful insights into their influence on precipitation extremes in the 

research area. The negative correlations of TPI, SOI, and NPI with cumulative 

wet days (CWD) imply a decline in wet day occurrences during periods of 

high index values, pointing to a drying trend. Conversely, the positive 

correlations of these indicators with heavy rainfall and consecutive dry days 

(CDD) indices (R20mm and R95p) suggest an increased likelihood of 

extended dry spells and severe rainfall events during those periods. In 

summary, the findings align with previous research by Anose et al.(2022) and 

Hou et al.(2023), which highlights that SLP anomalies are closely associated 

with climate conditions in the southern regions, contributing to prolonged dry 

spells and fewer occurrences of heavy rainfall. 

4.  Conclusion 

Evaluating the temporal and spatial trends of temperature and precipitation 

extremes at a fine resolution is crucial for effective management and decision-

making across various sectors, particularly in water resource management and 

agriculture. This study examined the daily extreme indices in the Borena Zone 

from 1981 to 2020, revealing significant increases in both temporal and 

spatial extremes of temperature. Notably, while the mean maximum and 

minimum temperatures exhibited substantial upward trends, the indices for 

cool days (TX10p) and cool nights (TN10p) showed only slight increases, 

further exacerbating the region's warming situation. The analysis of spatial 

and temporal trends indicates a concerning pattern: a decrease in continuous 

wet days (CWD) alongside an increase in continuous dry days (CDD). These 
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findings suggest a shift towards more prolonged dry spells, which have 

significant implications for local ecosystems and agricultural practices. 

Additionally, the evaluation of the correlation between daily extreme rainfall 

indices and global climate indices revealed that large-scale atmospheric 

patterns, such as Sea Surface Temperature (SST) and Sea Level Pressure 

(SLP), significantly influence regional climate variability. Specifically, the 

positive correlation of SST and SLP with CDD indicates an increasing 

likelihood of extended dry spells, while the negative correlations with CWD 

highlight a decline in wet day occurrences, suggesting a trend towards aridity. 

Understanding the relationships between regional climate variables and large-

scale climate indices is essential for developing effective adaptation strategies 

in response to these climatic changes. The findings underscore the urgent 

need to address the impacts of extreme temperature and rainfall events, which 

pose challenges to infrastructure, agricultural productivity, and water 

resource availability. Furthermore, the documented erratic rainfall patterns 

and rising temperatures in the Borena Zone call for further research to 

quantify the magnitude of these extreme events and their implications for 

climate variability in the region. 

In conclusion, proactive measures must be implemented to mitigate the risks 

associated with these climatic phenomena, ensuring sustainable management 

of resources and resilience in the face of ongoing climate change. 
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