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ABSTRACT: The acyclic network on which our problem is defined is a 
weighted directed graph G=(N, A) with no directed cycle. A method to 
determine the first, second, third, .. , and k-th longest paths for a given integer 
k ~2 is described. An algorithm of O(k2m) to determine the k-longest path in the 
network consisting of m arcs is also given. There can be various advantages of 
determining k-longest path in many industrial, engineering and management 
problems that deal with planning and scheduling of activities involvingn specified 
jobs subjected to precedence constraints. Indeed, such problems can be.modelled 
mathematically by acyclic networks. 
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INTRODUCTION 

We consider a finite directed graph G = (N, A), where N is a set of finite nodes 
and A is a set of directed arcs in which each arc is joining a pair of nodes. We 
denote an arc emanated from a node i and incident into a node j by an ordered 
pair (i, j). 

A path P in the directed graph from a node il to a node i.. is a sequence of 
nodes and arcs alternately occurring in the directed graph, il> (il> i2), i2, (i2' i3), 
i), ... , (i..-I, in)' in. We denote the path P by il - i2 -, ... , -in-1- i.. (Turner, 1970). 
A directed cycle is a path il - i2 -... - in-1- in -i l • If a path P contains an arc (i, 
j), we may describe it as (i, j) E P. 
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A weighted directed graph or a network is a directed graph in which a 
numerical value is associated with its arcs and/or nodes. In the sequel, the 
weight is a numerical value that is associated with the arcs. The weight of an 
arc (i, J) may be called the length of the arc and denoted by lij' 

Given a path in a weighted directed graph, the weight of the path is the sum of 
the weights of all arcs on the path (Hamacher and Queyranne, 1985; Brucker, 
1995). The weight of a path P may also be called the length of the path and 
denoted by 1(P), i.e., 

l(P) = Elij • (i,j) EP 

A graph is called an acyclic network if it is a weighted directed graph with no 
directed :.ycle (Murty, 1992). Many industrial problems such as activity 
scheduling problems which involve n jobs with precedence constraints and also 
many engineering and management problems such as project planning and 
scheduling can be modelled mathematically by acyclic networks. One of the 
primary objectives of such planning and scheduling problems is to find a 
schedule of activities so as to complete the jobs in least possible time. 
Mathematically, this is the problem of determining the longest weighted path in 
the acyclic network since the weight of the longest path is just the least possible 
time for the completion of jobs (Brucker, 1995). It is well known that this 
problem is solved by the Critical Path Method (CPM). 

Even though the technique of CPM and its algorithm can be used to find the 
longest path in the acyclic network, it never tells us which one is the next 
longest path, next to the actual longest path. In general, however, it may be 
desired for a number of reasons to be able to determine, in addition to the 
longest path, the next or second, third, ... , k-th longest path for an integer 
k ~ 2. Therefore this is to extend the already existing longest path algorithm or 
CPM to an algorithm that can find these desired paths in the acyclic network. 
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RANKED k-LONGEST PATHS 

Definition 
Let P be the set of all paths from the source node to a node j in the acyclic 
network and let I: P -. [0, (0) he the weight function which assigns the length 
(or distance value) to a given path. Let an integer k;;;::2 be given. Then, 

1. A set of ranked k-longest paths R :::= {PI> P2' P3 .... , Pk} to the node j is the 
set of paths such that: 

I(PI) ~ I(Pz) ~ I(P3) ~ ... ~ I(PJ ~ I(P) vP~R. 

2. P is the next longest path to Pr , for r = 1,2, ... , k-l, if 
i. both P and Pr are paths from the source node to the node j, 
ii. l(Pr) ;;;:: 1(P), and 
iii. l(Pr) ~ l(P) ~ 1(P) f~r some path p from the source node to 

j implies either 1(P) "* I(P) or I(P) = 1(P). 

Assumptions 
1. The network has only one soarce node and only one sink (terminal) node. 
2. The network is toPQ~ogically ordered, Le., we numbered (or ordered) nodes 

in the network in such a way i < j for each arc (i, j) in the network. 
3. 0 ~ lij < 00, where lij is the length of an arc (i, j). 

Notation 

Let p/ be actual longest path from source node to the node j. Then, 

a. 

·b. 
;I 

P;+l denotes the next longest path to p!, for each r= 1, 2, ... , k-l. 

At the sink node n, P: is the r-th longest path in the network and may 
be denoted simply by Pr. 

Definition 

P;, r= 1, 2 ... , k-l, is called the r-th longest path from the source node to a 
node j in the network. 
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To determine the set of ranked k-Iongest paths, we select first a desired integer 
k ~ 2. Then starting from node 1 (the source node), step by step, we find a set 

of ranked k-Iongest paths pi, pI, ... , pI to each node j in the network. In 
general, to each node j we will assign appropriately a k-vector of distance label 

dG) = (djl, dj2, ••• djJ where the r-th component label djr = [(p;') and djl ~ dj2 

~ ... ~ djk• 

To do this, one can proceed essentially as follows: 

Initially set d11 = 0, i.e., [(pb == O. This means the first longest path from the 
source node to itself is assigned O. 

Then set d1r = -00, i.e., Z(P:) == -00, for r=2, 3, ... , k, which means there are 
no other second, third, ... , or k-paths from the source node to itself. 

Thus we have, at the beginning, del) = (0, -00, .•. , -00). Then for any other 
node j == 2, 3, ... , n initially we determine, of all paths to j, a longest path 
from node 1 to node j and its distance using the forward path algorithm of the 

CPM (Murty, 1992, p. 413). This is the first longest path to j, l(Pi>. We 

therefore set djl == [(ph. Once we get, pi we cut (or exclude) this path 

temporarily, i.e., exclude all arcs on pI, and find the next longest path to the 

node j. Cutting this path is necessary, otherwise it reappears in the next steps. 

To cut this path, numerically we assiKn temporarily Z(Pi): == -00, i.e., a 
sufficiently large negative number, say -99999, which depends on the particular 
problem. 

After cutting pi, we determine a longest path to j and its distance from all 

remaining paths to j. This path is pI, the second longest path to node j. Thus 

we assign dp == Z(pI) and cut also this path in the same way as pi is cut. We 

continue in this way until pi and djk are determined. If there is no r-th path to 
a node j, we put djr == -00. 
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In each step, the cutting of a path should be temporary since we may need the 
path later when we find labels of nodes j + 1, j + 2, ... , n, since the r-th longest 
path to j may share some arcs with the next one. The key to the procedure is, 
in fact, the ability to cut a path temporarily. We will see a way to do this in thG 
next algorithm. 

In the next algorithm for each node j we need information about its predecessor 
node corresponding to the r-th longest path to j. For this purpose we have to 
construct a predecessor index predG(r» which records a predecessor of the node 

j that lies on pI. In· such cases, ifpred(j(r»=i(ro), for some ro E {1,2, ... , k}, 

then this is to mean node i is the predecessor of the node j that lies on p! and, 

going back, we determine the predecessor of the node that lies on P; from 

pred(i(ro»; and so on. At the termination of the algorithm, we get the r-tIl 
longest path P, by the belp of the predecessor indices starting from the sink 
node n, following pred(n(r») back to the node 1. . 

For each node j, the precedence node(s) can be viewed as a k-vector 

whenever there are k distinct paths to j. Observe that, however, pred G(r» can 
be i(ro) only for some ro such that 1 ~ ro ~ rand i E BO) =={U(i,j) E A}. 

RANKED K-LONGEST PATH ALGORITHM 

Consider a topologically ordered acyclic network, and a given integer k ~ 2. 
In the algorithm, the variable Temp (i(r» holds temporarily the length of the r­
th longest path to the node i. 

Step J: Initialisation: 

Set j: = 1; 
d1l : = 0; d1r:= -00, for r == 2,3, ... , k; 
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Step 2: Main step: 

Letj: = j+l; 
Let BG) ={iI(i,]) E A}. 
Let Temp (i(r» = dir for all iEB G) and r = 1,2, ... , k; 

For r = 1 to k Do 
Begin 
If r = 1 then, 
Begin 

djl = max. i E B(j){Temp(i(I»+ lij}; 
Let im be anyone at which the maximum occurs; 
pred G(1» = im(I); 
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set Temp (im(1» = -00; (this cuts the path pf temporarily) 
Eud-if 

Else 
Begin 

djr = max. i E B(j){Temp(i(t)+ lit = 1, 2, ... , r}; 

End-Else 
End-For 

Let im (ro), for im E BG) & ro E {I, 2, ... , r}, be anyone at 
which a positive maximum occur; 
pred (j(r» = im (ro); 
Set Temp (im(ro» ::= -00; 

d(j): = (djl. dj2, ... , djJ; 
If j ~ n, GOTO STEP 2; 

Else 
For r = 1 to k 
Pr = 1-il-... -i.'1 -i.-n, where 

pred (n(r» = i. (.), pred (i. (.» = i •. I (.), ... , pred (il('» = 1(1); 
STOP. 

As an example, let us find the ranked 3-longest paths of the following network 
using the k-Iongest path algorithm (Fig. 1). 
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Fig. 1. Sample of an acyclic network. The number on each arc (arrow) represents 
the weight of the corresponding arc. 

Applying the Algorithm to this network with k==3, we can get the following 
results (fable 1). 

Table 1. Distance label and precedence node(s) for each node in the network of 
Figure 1. 

d(l)=(O, -00, -(0) 

d(2)=(3, -00, -(0), 

d(3)=(7, 4, -(0), 

d(4)=(1l, 9, 8), 

d(5)=(17, 15, 14), 

d(6)=(19, 19, 17), 

d(7)=(28, 28, 27), 

pred(2(1»= 1(1) 

pred(3(1»= 1(1) pred(3(2»=2(1) 

pred(4(1»=2(1) pred(4(2»= 1(1) pred(4(3)=3(1) 

pred(5(1»=4(1) pred(5(2» =4(2) pred(5(3»=4(3) 

pred(6(1»=3(1) pred(6(2»=5(1) pred(6(3»=5(2) 

pred(7(1»=6(1) pred(7(2»=6(2) pred(7(3»=4(1) 

Then, we can get the ranked 3-10ngest paths PI' Pz, and P3, of the network 
using the predecessor indices (Table 1), starting from the sink node 7, following 
pred(7(r)), for r== 1, 2, 3, back to the node 1. 

That is, 
PI: 7, pred(7(1)) =6(1), pred(6(1)) == 3(1), pred(3(1») = 1 (1). 
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:0$ PI is 1-3-6-7 and 1(p\)=28. 

Pz : 7~ pred(7(2»=6(2), pred(6(2)=5(1), pred(5(1))=4(J), pred(4(1»=2(l), 
pred(2(1»= 1(1). 

:0$ Pz is 1-2-4-5-6-7 and l(Pz) =28. 

P3 : 7, pred(7(3»)=4(1), pred(4 (1»=2(1), pred(2(l»= 1(1). 
:0$ P3 is 1-2-4-7 and I(P3)=27 

COMPLEXITY OF THE K-LONGEST PATH ALGORITHM 

Consider m arcs and n nodes in the network. The complexity of the k-Iongest 
path algorithm is intluenced by how it finds the maximum value and the number 
of repetitions (iterations) that occur in the main step of the algorithm. 

In the main step, there are n-l iterations, where each iteration corresponds to 
each node j= 2,3, ... ,n respectively. Moreover, to determine the r-th longest 
path incident to a node j, at most r I B(j) I comparisons are to be made in order 
to find the maximum value for djr> where I B(j) I is the number of arcs incident 
into j. Thus, the total operation can be approximated by: 

Hence the complexity of the k-Iongest path algorithm is O(k2m). 

SOME USES OF K-LONGEST PATH 

Here we consider some of the advantages of determining the k-Iongest paths to 
a project planning and scheduling problem. For a given integer k 2 2 and a 
project network (network model of a project), the ranked k-Iongest paths 
together with their respective lengths can be found using the k-longest path 
algorithm. In this case, the r-th components of the k-vector of distance label 










