
SINET: Ethiop. J. Sci., 21(2):171-182, 1998

© Faculty of Science, Addis Ababa University, 1998 ISSN: 0379-2897

RANKED K-LONGEST PATHS IN AN ACYCLIC NETWORK, ITS
ALGORITHM AND APPLICATION

Berhanu Guta

Department of Mathematics, Faculty of Science, Addis Ababa University
PO Box 1176, Addis Ababa, Ethiopia

ABSTRACT: The acyclic network on which our problem is defined is a
weighted directed graph G=(N, A) with no directed cycle. A method to
determine the first, second, third, .. , and k-th longest paths for a given integer
k ~2 is described. An algorithm of O(k2m) to determine the k-longest path in the
network consisting of m arcs is also given. There can be various advantages of
determining k-longest path in many industrial, engineering and management
problems that deal with planning and scheduling of activities involvingn specified
jobs subjected to precedence constraints. Indeed, such problems can be.modelled
mathematically by acyclic networks.

Key words/phrases: Acyclic network, algorithm, CPM, k-Iongest paths,
longest path

INTRODUCTION

We consider a finite directed graph G = (N, A), where N is a set of finite nodes
and A is a set of directed arcs in which each arc is joining a pair of nodes. We
denote an arc emanated from a node i and incident into a node j by an ordered
pair (i, j).

A path P in the directed graph from a node il to a node i.. is a sequence of
nodes and arcs alternately occurring in the directed graph, il> (il> i2), i2, (i2' i3),
i), ... , (i..-I, in)' in. We denote the path P by il - i2 -, ... , -in-1- i.. (Turner, 1970).
A directed cycle is a path il - i2 -... - in-1- in -i l • If a path P contains an arc (i,
j), we may describe it as (i, j) E P.

172 Berhanu Gum

A weighted directed graph or a network is a directed graph in which a
numerical value is associated with its arcs and/or nodes. In the sequel, the
weight is a numerical value that is associated with the arcs. The weight of an
arc (i, J) may be called the length of the arc and denoted by lij'

Given a path in a weighted directed graph, the weight of the path is the sum of
the weights of all arcs on the path (Hamacher and Queyranne, 1985; Brucker,
1995). The weight of a path P may also be called the length of the path and
denoted by 1(P), i.e.,

l(P) = Elij • (i,j) EP

A graph is called an acyclic network if it is a weighted directed graph with no
directed :.ycle (Murty, 1992). Many industrial problems such as activity
scheduling problems which involve n jobs with precedence constraints and also
many engineering and management problems such as project planning and
scheduling can be modelled mathematically by acyclic networks. One of the
primary objectives of such planning and scheduling problems is to find a
schedule of activities so as to complete the jobs in least possible time.
Mathematically, this is the problem of determining the longest weighted path in
the acyclic network since the weight of the longest path is just the least possible
time for the completion of jobs (Brucker, 1995). It is well known that this
problem is solved by the Critical Path Method (CPM).

Even though the technique of CPM and its algorithm can be used to find the
longest path in the acyclic network, it never tells us which one is the next
longest path, next to the actual longest path. In general, however, it may be
desired for a number of reasons to be able to determine, in addition to the
longest path, the next or second, third, ... , k-th longest path for an integer
k ~ 2. Therefore this is to extend the already existing longest path algorithm or
CPM to an algorithm that can find these desired paths in the acyclic network.

-SINET: Ethiop. J. Sci., 21(2), 1998 173

RANKED k-LONGEST PATHS

Definition
Let P be the set of all paths from the source node to a node j in the acyclic
network and let I: P -. [0, (0) he the weight function which assigns the length
(or distance value) to a given path. Let an integer k;;;::2 be given. Then,

1. A set of ranked k-longest paths R :::= {PI> P2' P3 , Pk} to the node j is the
set of paths such that:

I(PI) ~ I(Pz) ~ I(P3) ~ ... ~ I(PJ ~ I(P) vP~R.

2. P is the next longest path to Pr , for r = 1,2, ... , k-l, if
i. both P and Pr are paths from the source node to the node j,
ii. l(Pr) ;;;:: 1(P), and
iii. l(Pr) ~ l(P) ~ 1(P) f~r some path p from the source node to

j implies either 1(P) "* I(P) or I(P) = 1(P).

Assumptions
1. The network has only one soarce node and only one sink (terminal) node.
2. The network is toPQ~ogically ordered, Le., we numbered (or ordered) nodes

in the network in such a way i < j for each arc (i, j) in the network.
3. 0 ~ lij < 00, where lij is the length of an arc (i, j).

Notation

Let p/ be actual longest path from source node to the node j. Then,

a.

·b.
;I

P;+l denotes the next longest path to p!, for each r= 1, 2, ... , k-l.

At the sink node n, P: is the r-th longest path in the network and may
be denoted simply by Pr.

Definition

P;, r= 1, 2 ... , k-l, is called the r-th longest path from the source node to a
node j in the network.

174 Berhanu Guta

To determine the set of ranked k-Iongest paths, we select first a desired integer
k ~ 2. Then starting from node 1 (the source node), step by step, we find a set

of ranked k-Iongest paths pi, pI, ... , pI to each node j in the network. In
general, to each node j we will assign appropriately a k-vector of distance label

dG) = (djl, dj2, ••• djJ where the r-th component label djr = [(p;') and djl ~ dj2

~ ... ~ djk•

To do this, one can proceed essentially as follows:

Initially set d11 = 0, i.e., [(pb == O. This means the first longest path from the
source node to itself is assigned O.

Then set d1r = -00, i.e., Z(P:) == -00, for r=2, 3, ... , k, which means there are
no other second, third, ... , or k-paths from the source node to itself.

Thus we have, at the beginning, del) = (0, -00, .•. , -00). Then for any other
node j == 2, 3, ... , n initially we determine, of all paths to j, a longest path
from node 1 to node j and its distance using the forward path algorithm of the

CPM (Murty, 1992, p. 413). This is the first longest path to j, l(Pi>. We

therefore set djl == [(ph. Once we get, pi we cut (or exclude) this path

temporarily, i.e., exclude all arcs on pI, and find the next longest path to the

node j. Cutting this path is necessary, otherwise it reappears in the next steps.

To cut this path, numerically we assiKn temporarily Z(Pi): == -00, i.e., a
sufficiently large negative number, say -99999, which depends on the particular
problem.

After cutting pi, we determine a longest path to j and its distance from all

remaining paths to j. This path is pI, the second longest path to node j. Thus

we assign dp == Z(pI) and cut also this path in the same way as pi is cut. We

continue in this way until pi and djk are determined. If there is no r-th path to
a node j, we put djr == -00.

SINE1:· Ethiop. J. Sci., 21(2), 1998 175

In each step, the cutting of a path should be temporary since we may need the
path later when we find labels of nodes j + 1, j + 2, ... , n, since the r-th longest
path to j may share some arcs with the next one. The key to the procedure is,
in fact, the ability to cut a path temporarily. We will see a way to do this in thG
next algorithm.

In the next algorithm for each node j we need information about its predecessor
node corresponding to the r-th longest path to j. For this purpose we have to
construct a predecessor index predG(r» which records a predecessor of the node

j that lies on pI. In· such cases, ifpred(j(r»=i(ro), for some ro E {1,2, ... , k},

then this is to mean node i is the predecessor of the node j that lies on p! and,

going back, we determine the predecessor of the node that lies on P; from

pred(i(ro»; and so on. At the termination of the algorithm, we get the r-tIl
longest path P, by the belp of the predecessor indices starting from the sink
node n, following pred(n(r») back to the node 1. .

For each node j, the precedence node(s) can be viewed as a k-vector

whenever there are k distinct paths to j. Observe that, however, pred G(r» can
be i(ro) only for some ro such that 1 ~ ro ~ rand i E BO) =={U(i,j) E A}.

RANKED K-LONGEST PATH ALGORITHM

Consider a topologically ordered acyclic network, and a given integer k ~ 2.
In the algorithm, the variable Temp (i(r» holds temporarily the length of the r­
th longest path to the node i.

Step J: Initialisation:

Set j: = 1;
d1l : = 0; d1r:= -00, for r == 2,3, ... , k;

n6

Step 2: Main step:

Letj: = j+l;
Let BG) ={iI(i,]) E A}.
Let Temp (i(r» = dir for all iEB G) and r = 1,2, ... , k;

For r = 1 to k Do
Begin
If r = 1 then,
Begin

djl = max. i E B(j){Temp(i(I»+ lij};
Let im be anyone at which the maximum occurs;
pred G(1» = im(I);

Berhanu Guta

set Temp (im(1» = -00; (this cuts the path pf temporarily)
Eud-if

Else
Begin

djr = max. i E B(j){Temp(i(t)+ lit = 1, 2, ... , r};

End-Else
End-For

Let im (ro), for im E BG) & ro E {I, 2, ... , r}, be anyone at
which a positive maximum occur;
pred (j(r» = im (ro);
Set Temp (im(ro» ::= -00;

d(j): = (djl. dj2, ... , djJ;
If j ~ n, GOTO STEP 2;

Else
For r = 1 to k
Pr = 1-il-... -i.'1 -i.-n, where

pred (n(r» = i. (.), pred (i. (.» = i •. I (.), ... , pred (il('» = 1(1);
STOP.

As an example, let us find the ranked 3-longest paths of the following network
using the k-Iongest path algorithm (Fig. 1).

SINET: Ethiop. 1. Sci., 21(2), 1998 177

10

3
5

6

C) ____ 9 __ ~----~\ 16

2
1 9

12

Fig. 1. Sample of an acyclic network. The number on each arc (arrow) represents
the weight of the corresponding arc.

Applying the Algorithm to this network with k==3, we can get the following
results (fable 1).

Table 1. Distance label and precedence node(s) for each node in the network of
Figure 1.

d(l)=(O, -00, -(0)

d(2)=(3, -00, -(0),

d(3)=(7, 4, -(0),

d(4)=(1l, 9, 8),

d(5)=(17, 15, 14),

d(6)=(19, 19, 17),

d(7)=(28, 28, 27),

pred(2(1»= 1(1)

pred(3(1»= 1(1) pred(3(2»=2(1)

pred(4(1»=2(1) pred(4(2»= 1(1) pred(4(3)=3(1)

pred(5(1»=4(1) pred(5(2» =4(2) pred(5(3»=4(3)

pred(6(1»=3(1) pred(6(2»=5(1) pred(6(3»=5(2)

pred(7(1»=6(1) pred(7(2»=6(2) pred(7(3»=4(1)

Then, we can get the ranked 3-10ngest paths PI' Pz, and P3, of the network
using the predecessor indices (Table 1), starting from the sink node 7, following
pred(7(r)), for r== 1, 2, 3, back to the node 1.

That is,
PI: 7, pred(7(1)) =6(1), pred(6(1)) == 3(1), pred(3(1») = 1 (1).

178 Berhanu Guta

:0$ PI is 1-3-6-7 and 1(p\)=28.

Pz : 7~ pred(7(2»=6(2), pred(6(2)=5(1), pred(5(1))=4(J), pred(4(1»=2(l),
pred(2(1»= 1(1).

:0$ Pz is 1-2-4-5-6-7 and l(Pz) =28.

P3 : 7, pred(7(3»)=4(1), pred(4 (1»=2(1), pred(2(l»= 1(1).
:0$ P3 is 1-2-4-7 and I(P3)=27

COMPLEXITY OF THE K-LONGEST PATH ALGORITHM

Consider m arcs and n nodes in the network. The complexity of the k-Iongest
path algorithm is intluenced by how it finds the maximum value and the number
of repetitions (iterations) that occur in the main step of the algorithm.

In the main step, there are n-l iterations, where each iteration corresponds to
each node j= 2,3, ... ,n respectively. Moreover, to determine the r-th longest
path incident to a node j, at most r I B(j) I comparisons are to be made in order
to find the maximum value for djr> where I B(j) I is the number of arcs incident
into j. Thus, the total operation can be approximated by:

Hence the complexity of the k-Iongest path algorithm is O(k2m).

SOME USES OF K-LONGEST PATH

Here we consider some of the advantages of determining the k-Iongest paths to
a project planning and scheduling problem. For a given integer k 2 2 and a
project network (network model of a project), the ranked k-Iongest paths
together with their respective lengths can be found using the k-longest path
algorithm. In this case, the r-th components of the k-vector of distance label

