RESEARCH ARTICLE

SEASONAL DIVERSITY OF URBAN BIRDS: THE CASE OF BAHIR DAR CITY, ETHIOPIA

Abeba Alemu¹, Nega Tassie^{1,*} and Dessalegn Ejigu¹

ABSTRACT: Although the most direct impact of cities on biodiversity is the change in land cover associated with urban growth, large number of species have been recorded to live, and even thrive, within urban centers. The present study was conducted from August 2018 to March 2019 and aimed to investigate the seasonal diversity and habitat association of birds in Bahir Dar city. Semi-forest, wetland, waste dumping site and residential area were habitats identified based on topographic map and ground truthing survey. A total of 100 point count stations within 10 plots of the semi-forest habitat and 550 line transects within 55 blocks of open habitats were used to collect data. Diversity indices, chi-square and ANOVA were employed for data analyses. A total of 186 bird species belonging to 21 orders and 59 families were recorded. The highest diversity of bird species was observed in the residential area during the wet season (H' = 3.78) and the lowest was in waste dumping site during the dry season (H' = 2.11). Test of association between season and habitat types as a function of birds' abundance also confirmed the presence of strong association between season and birds abundance. Availability of food, water and nesting sites were the main players to determine the diversity and abundance of birds within Bahir Dar city. The study area supports large number of bird species that confirms the area's potential for bird watching tourism. Therefore, there must be a collaborative work with the city administration for protecting the urban ecosystem to conserve the biodiversity therein.

Key words/phrases: Bahir Dar city, Birds, Diversity, Habitat association, Relative abundance.

INTRODUCTION

The growth of cities and the process of urbanization worldwide has been a predominant cause of species extinction (McKinney, 2002). Threats to biodiversity are particularly inherent to such rapid urbanization, which raises concern over the future of the already reduced diversity in settings surrounding urban neighbourhoods (Evans *et al.*, 2011). Among all biodiversity, birds are one of the most common wildlife in urban areas such

¹Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia. E-mail: nega7719@gmail.com

^{*}Author to whom all correspondence should be addressed

as neighbourhoods and cities, and many bird populations have been declining as a result of landscape changes due to urban expansion (Strohbach *et al.*, 2009).

Waste volume is growing faster than urbanization rates and its generation rates will be more than double in the next twenty years, especially in low income countries (Hoornweg and Bhada-Tata, 2012). Air, soil and water pollution due to emissions from industry, traffic and heating, or nutrient loads to water bodies cause changes in biogeochemical cycle and primary production (Grimm *et al.*, 2008). Their effects may expand well beyond city boundaries and once entered to the food chain, they can be detrimental for a wide range of organisms (Eeva *et al.*, 2003).

In urban areas bioaccumulation of heavy metals has already been demonstrated in many common bird species (Bichet *et al.*, 2013). The detrimental, synergistic effects of such pollutants on birds is known that young individuals are more sensitive, suffering from higher mortality, reduced body mass and reduced reproductive success (Janssens *et al.*, 2003).

The most characteristic components of urbanized landscapes are buildings (Arnold and Zink, 2011). Buildings are usually associated with increased human activity, pets, pollution, elevated noise and light levels, reduced vegetation that results in heat island effect and thus might be avoided by species susceptible to disturbance. However, more tolerant species may gain benefits from their presence (Miller et al., 2001). The proximity of buildings, for example, may serve as a thermal shelter for overwintering species (Raupp et al., 2010) and certain bird species preferentially roost or breed in houses. Collision mortality in birds is also highly increased by the presence of buildings. Long distance migrants are especially vulnerable to such risks during their annual spring and fall routes; nevertheless, a recent study on North American birds failed to find positive correlation between collision mortality and long-term population trends (Arnold and Zink, 2011). With increasing building density, the surface covered by vegetation gets necessarily reduced and spatially more fragmented, adversely affecting the distribution, abundance and species richness of many native animal taxa.

The destruction of natural habitats due to urban development can have negative impacts on native species (Czech *et al.*, 2000). Urban cores, for example, have lower bird diversity than surrounding natural areas as native bird species are replaced by few non-native species that are associated with humans (Marzluff, 2005). Heterogeneous landscapes may favour certain species and promote local diversity (Atchison and Rodewald, 2006). Indeed,

at intermediate to large spatial scales, species richness increases with human population density, because non-native species are added to the local species pool (Pautasso, 2007).

Over larger spatial scales, the environmental conditions of urban landscapes may be more similar to each other than to adjacent natural landscapes, likely supporting similar species (Groffman, 2014). In addition, high human densities may be associated with greater concentrations of resources that are similar across space and stable through time. These resources such as food, water, and shelter could provide a buffer against environmental conditions and support similar species at similar abundances irrespective of geographical location. In fact, food subsidies have been shown to increase the abundance of urban specialists (McKinney, 2002).

The diversity of both plant and animal species might be affected by many factors including expansion of agricultural activity, pollution, overgrazing, deforestation, waste disposal, disturbance of breeding habitat and climate change (Aerts et al., 2008). These activities have detrimental effect on ecosystem functions (Kingsford, 2000). Changes in physiology and phenology of species, geographic distributions, and in some cases, extinction are the consequences of such disturbances (Girma Mengesha et al., 2011). In Ethiopia, many aquatic and terrestrial ecosystems that provide biological and ecological importance are threatened and require series legislative conservation actions. Thus, knowledge regarding the ecology and conservation of aquatic and terrestrial fauna and flora at local level is important to devise effective management plans. To the best of our knowledge, there is not a single study carried out in the whole Bahir Dar city except a study conducted in the modified habitats of Bahir Dar Gulf of Lake Tana and the island of Debre Maryam (Shimelis Aynalem et al., 2008). Our study therefore provides policy makers and conservationists with scientific information about the ecological status of birds in Bahir Dar city and how species are distributed in the city in relation to the urban layout.

MATERIALS AND METHODS

Description of the study area

The study was conducted in Bahir Dar city, the capital of Amhara National Regional State (ANRS), which is located about 565 km away northwest of Addis Ababa. The city is located at $37^{\circ}23'$ E, and $11^{\circ}36'$ N (Fig. 1). It covers a total area of 28 km² and flanked by Lake Tana to the North, Woreb rural kebele to the East, Meshenti town to the West, and Tissisat Falls to the South. The average elevation of Bahir Dar is 1,800 m a.s.l. The city is one

of the leading tourist destinations in Ethiopia with a variety of attractions such as Lake Tana and Lake and its Islands considered sacred and provide refuge and shelter for many plant and animal species of local and international significance. The city is known for its wide avenues lined with palm trees and variety of flower beds. The natural vegetation mainly consists of a few remnants of different tree species, bushes and grasses. Papyrus is dominant along the coastlines of Lake Tana and Blue Nile River. Eleven years (2008–2018 rainfall data showed that the highest average monthly rainfall is 417.19 mm in July, and the lowest 1.37 mm in January and the average monthly minimum and maximum temperature is 7.72°C in December and 31.36°C in March, respectively.

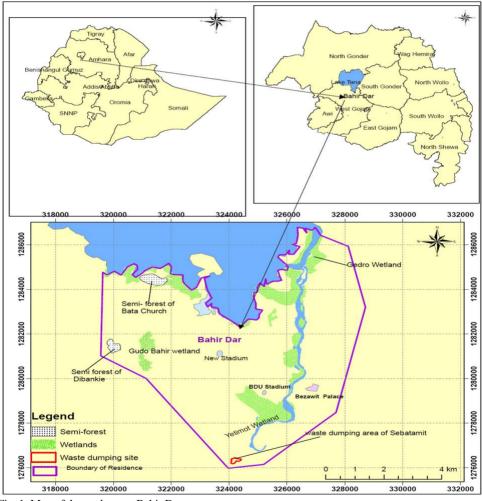


Fig. 1. Map of the study area, Bahir Dar.

Sampling design

A reconnaissance survey was carried out during the first two weeks of August, 2018. The survey was to collect information on the flora and fauna, and to determine the size of the study area. Stratified random sampling technique was employed. The study area was classified in to four habitat types. These included residential area (4572 ha), characterized by buildings, city parks, greeneries; wetland (lake shore and offshore) area (460.60 ha), waste dumping sites (5.28 ha), which is a landfill area used as a garbage dump; and semi-forest areas (25.20 ha). Sampling plots and blocks were established in each habitat type. Data in open habitats; residential area, wetlands and waste dumping site were collected using line transect method, and point transect in the semi forest habitat (Bibby et al., 2000). The number of sampling points and lines within each plot and block was determined relative to the size of habitats and type of vegetation cover. As a result, a total of 65 plots consisting of ten sampling points and line transects were established (Table 1). Roads between residential blocks and kebeles were used as a transect line. A distance of 150 m and 20 m was maintained between transects in the wetland and dumping site study habitats, respectively.

Table 1. Allocation of plots/blocks and sampling points and transect lines based on area coverage of each habitat type.

Habitat classification						
Semi-forest	Residential	Wetland	Waste dumping site			
10	40	10	5			
-	400	100	50			
100	-	-	-			
	Semi-forest 10 -	Semi-forest Residential 10 40 - 400	Semi-forest Residential Wetland 10 40 10 - 400 100			

Data collection

In order to minimise the effect of time and weather conditions on bird detectability, point counts were undertaken only between 06:00 am and 09:00 am and late in the afternoon between 3:00 pm and 6:00 pm, when most of the avian species are active under calm weather conditions (Canterbury *et al.*, 2000). During counting, the ending point in the morning is the beginning point in the late afternoon. Data collection was carried out from August 2018 to March 2019 covering both wet and dry seasons. Wet season data were collected from August to October, and dry season from January to March. Bird identifications and counting of individuals were conducted by direct observations aided with binoculars and field guidebooks (Perlo, 2009; Redman *et al.*, 2009). In the semi-forest habitat where the vegetation is relatively dense, observations were made by standing in the

middle of the point station observing 360° round quietly and gently up to a distance of 30 m radius of the station. The observer upon reaching a point stands still for about 2–5 minutes to allow birds to settle in case of any disturbance. In between each point count station, a minimum distance of 100 m was maintained using GPS track to avoid double counting of birds (Vielliard, 2000). Bird species were identified by using their feather colours, beak shape, legs and overall body size (Wenny *et al.*, 2011). Photographs and videos were taken to confirm the species which were difficult to identify on site. A total of 12 observations per season were carried out in the residential area and six observations were undertaken in each of the remaining three habitats per season. The data were collected for about 60 days in both seasons.

Data analysis

Analysis of counts and associations in different habitats was carried out using ANOVA to determine whether there are any statistically significant differences between the count means of species in the study habitats, and chi-square test to see whether distributions of species among the habitats differ. Shannon-Weiner (Shannon and Weaver, 1949), Simpson Diversity (Simpson, 1949) and Simpson's community similarity indices were used to evaluate the diversity of bird species in different habitats of the study area using R version 4.0.0 (R Core team, 2020).

Species diversity index

The Shannon Weiner diversity index -(\sum PilnPi) (where pi is the proportion of individuals belonging to the *i*th species) was used to identify the diversity of bird species at the four habitats. This index was selected because it provides an account for both abundance and evenness (Magurran, 1988). It does not also disproportionately favour some species over the others as it considers all species according to their frequencies.

Species richness (S) is defined by:

$S = \sum n$

Where, n is number of species in a community.

Species evenness (E) was used to evaluate by Shannon's equitability index (E) which is calculated by: E=H'/Hmax

Where, Hmax is defined as ln(S), H' is the Shannon-Wiener diversity index.

Similarity index

Similarity of species diversity between habitat types was calculated as:

SI = 2C/A+B

Where, SI = Simpson's similarity index;

A = Number of species that occur in habitat A;

B = Number of species that occur in habitat B;

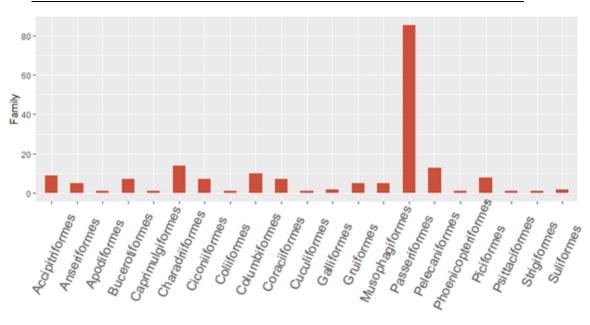
C = Number of common species that occur in both habitats.

The relative abundance of bird species in each habitat was calculated by:

Relative abundance = $\underline{\text{Total number of individuals of a particular species}} *100$

Total number of individuals of all species

Relative abundance values were used to ordinally categorize each species under the following five abundance categories (Bibby *et al.*, 2000) (Table 2).


Table 2. Relative abundance score categories.

Relative abundance value	Relative abundance score	Abundance category
< 0.1	1	Rare
0.1–2.0	2	Uncommon
2.1-10.0	3	Frequent
10.1-40.0	4	Common
> 40	5	Abundant

RESULTS

Species composition

A total of 186 species of birds belonging to 21 orders and 59 families were recorded in the study area (Appendix 1). Two species, white-cheeked turaco (*Tauraco leucotis*) and Ethiopian siskin (*Serinus nigriceps*) are endemic to Ethiopia; four species black-winged lovebird (*Agapornis taranta*), Abyssinian oriole (*Oriolus monacha*), wattled ibis (*Bostrychia carunculata*) and banded barbet (*Lybius undatus*) are endemic to Ethiopia and Eritrea. The maximum number of species was recorded in the family Ploceidae (12 species), followed by Columbidae (10 species), Accipitridae (9 species), and Estrildidae (8 species). The order Passeriformes was represented by the highest number of families (85) and the lowest number of families was recorded for the order Apodiformes, Cuculiformes, Phoenicopteriformes, Caprimulgiformes, Psittaciformes, Coliiformes, and Strigiformes (1 family each) (Fig. 2).

Order

Fig. 2. Avian species composition in the study area.

Species diversity

The highest diversity of bird species was observed in residential area during the wet season (H'= 3.78), and the lowest was observed in waste dumping site during the dry season (H'= 2.11). The highest uniform population distribution was found in the semi-forest area (E = 0.89), and the lowest was in waste dumping site during both seasons (E = 0.65). Species richness was the highest in residential area (152 species) and the lowest was recorded in waste dumping site (38 species) (Table 3). Bird community similarity was the highest between wetland and waste dumping site (0.54) and the lowest was between semi-forest and wetland area (0.23) during the wet season (Appendix 2).

Habitat	Season	No. of species	No. of individual	H'	H'max	Ε
	Wet	61	3545	3.66	4.11	0.89
Semi- forest	Dry	34	978	3.1	3.53	0.88
	Common	68	4523	3.71	4.21	0.88
	Wet	130	19418	3.78	4.87	0.78
Residential	Dry	90	9727	3.22	4.5	0.72
	Common	152	29145	3.75	4.11	0.83
	Wet	61	1400	3.4	4.11	0.83
Wetland	Dry	40	1042	2.89	3.69	0.78
	Common	67	2442	3.33	4.2	0.79

Table 3. Species diversity indices in the study area.

Habitat	Season	No. of species	No. of individual	Η'	H'max	Ε
Waste						
dumping site	Wet	33	1934	2.45	3.64	0.68
	Dry	24	1611	2.11	3.22	0.66
	Common	38	3545	2.4	3.66	0.65

H'= Shannon-Wiener Diversity Index; RI = richness index; E=. Evenness, H'max (lnS)

Relative abundance

Large number of species (95) was grouped under rare category, while small number of birds was grouped under frequent category (12 species). This value showed a statistically significant difference among the four habitats (F $_{(3,472)} = 9.61$, P<0.001), and between dry and wet seasons (F $_{(1,474)} = 5.59$, P <0.05). The overall abundance of species showed a statistically significant difference among the four habitats (F $_{(3,472)} = 9.05$, P<0.05); but not between seasons (F $_{(1,474)} = 1.16$, P>0.05). Test of association between season and habitat types as a function of birds abundance has also confirmed the presence of strong association between season and habitat types ($\chi^2 = 529.82$, P<0.05).

DISCUSSION

The present study recorded 186 species of birds, most of which are species that are locally rare and uncommon and could be associated to large home range, niche and habitat degradation (Ryan and Owino, 2006). The variation might be related with availability of food, the degree of threats/disturbances found in the area and other ecological requirements of birds. According to Mehra *et al.* (2017), bird species richness, distribution and abundances are directly or indirectly affected by spatial variations and rate of anthropogenic activities.

The highest number of bird species (152) was recorded in the residential area characterized by buildings, city parks, greeneries, among others, that attract birds to the urban environment. Birds which have been the focus of the majority of urban ecology studies often have access to a multitude of food sources due to human activities including supplementary foods (Galbraith *et al.*, 2015), refuse thrown away by humans in cities which provide easy source of food (Nyari *et al.*, 2006; Burgin and Saunders, 2007). High diversity and availability of food in urban habitats compared to natural ones may be a primary reason why some urban birds thrive (Coogan *et al.*, 2017).

Furthermore, the proximity of buildings may serve as a thermal shelter for overwintering prey species that serve as a food source for birds (Raupp *et*

al., 2010) and certain bird species preferentially roost or breed in houses. In fact, food subsidies have been shown to increase the abundance of urban specialists (McKinney, 2002). In the urban and surrounding suburban environment native plant communities are being replaced with managed systems of altered landscape structure, influencing ecological and environmental relationships. Managed urban areas tend to increase plant species richness largely due to exotic plantings (Pavlik and Pavlik, 2000). This might also have contributed to an increase in bird community composition shifts in response to exotic plantings within the residential area of the city

Besides, areas suitable for humans are also generally suitable for urban birds and human activities might increase the habitat diversity of urban area through introduced species and promoted landscape heterogeneity (Araujo, 2003). At intermediate to large spatial scales, species richness increases with human population density, because non-native species are added to the local species pool (Pautasso, 2007). In addition, high human densities may be associated with a higher supply of resources that are stable through time. While urban growth of any type reduces bird distributions, compact city development within existing residential areas substantially minimize these reductions at the city scale (Fuller *et al.*, 2010). Urban-sensitive species particularly benefited from compact development because large green spaces are left intact, whereas the distribution of non-native species is expected to expand as a result of sprawling development (Sushinsky *et al.*, 2013).

Although the study had expected high species diversity in semi-forest and wetland areas, the result was not as expected. The destruction of wetland habitats due to urban agriculture and overgrazing have affected breeding, roosting and feeding grounds of wetland birds that resulted in reduction in diversity and richness of birds. This is similar with the findings of Shimelis Aynalem and Afework Bekele (2008) that reported reduced bird species richness and density attributable to human disturbance, especially livestock grazing. A study conducted by Brouwer *et al.* (2003) also revealed that the most important threat for wetland birds is the degradation of wetlands which are ideal habitats for roosting and thermoregulation. Likewise, the reduction of wetland bird diversity is attributed to the degradation of wetlands and the loss of suitable upland habitats that surround wetlands reducing value to wetland dependent birds (Bellrose and Trudeau, 1998).

In semi-forest area the observed species was lower than expected (68 species). This might be due to changes in floristic complexity, and cover and densities of vegetation as this habitat is found within and in the vicinity of the city. The result of this study concurs with the findings of Schlossberg and King (2008) who revealed that removal or reduction of vegetation reduces the total area of contiguous habitats available to birds and increases the isolation of the habitat which results in fragmentation. The fragmented habitat provide ways to various predators that can successfully exploit by eating bird eggs, young and even adults which impact birds diversity. This observation was also reported by Doggart et al. (2005) that a decrease in plant community exposes birds to their predators, reduces food supply and breeding sites, which results in an intense competition within and between species that causes decrease in diversity and abundance. Generally, as vegetation cover increases toward the rural parts of a city, species diversity increases and in areas of intermediate disturbances (i.e., suburban development), diversity also increases (Daniels and Kirkpatrick, 2006).

In this study, species diversity and abundance was low in waste dumping site. This is similar with the finding of Matejczyk *et al.* (2011) who reported that the presence of materials like glasses, metals, wire, plastic, paints, different toxics and dangerous pathogens in waste dumping sites affect wildlife diversity and abundances, particularly avian species. Likewise, Dobson and Foufopoulos (2001) observed that waste dumping sites could be a source of emerging pathogens transmitted from the species that use these sites to other species - as a result, species diversity and abundance decline. Moreover, this result is supported by Battin (2004) who described that high risk of poisoning, foreign bodies ingestion and pathogen infection may make these places ecological traps with negative consequences for several species.

Similarly, the lowest species evenness was recorded in waste dumping site (E=0.65) as many urban birds used to forage on food left by humans. Reliance on human food source may become particularly important when other foraging choices become restricted. However, predators can reach higher numbers in urban waste dumping areas because of supplemental food. Thus, supplemental food resources that attract predators can have a significant effect on the persistence of small bird populations in the area which confirms the presence of different species but least in abundance. Freedom from persecution and an adequate food supply may allow raptors to inhabit the waste dumping site.

Alpha diversity which is measured using Simpson's index values showed 52% of community similarity between semi forest and residential area and 54% between waste dumping site and wetland habitats (Appendix 2). The semi forest and residential areas possess relatively higher similarity. This may be due to the fact that built-up areas, including institutional grounds, residential neighbourhoods, and informal settlements, possess plant communities that are more or less similar in type with the plants found in the semi-forest habitat which attract common birds to both habitats. Likewise, the close proximity of wasteland habitats to the waste dumping site might have contributed for these two habitats to possess relatively large number of shared species.

CONCLUSION

The study has documented exceptionally large number of bird species (186). This implies other economically and ecologically important fauna might be using the area. This confirms that the landscape of Bahir Dar's city administration is a critical urban environment for wildlife protection and development. The distribution of birds in different habitats in the study area is attributable to the presence of urban foraging sites, remnant forests, greeneries, city parks and buildings that serve as breeding sites and microhabitats that provide obstructive cover to lower the risk of predation. Therefore, proper management and protection of urban environments including Bahir Dar city is one potential area of wildlife protection that benefits cities eco-tourism development.

ACKNOWLEDGMENTS

The first author benefited from the Bahir Dar University's scholarship during the development of this study. We thank IdeaWild for providing essential field equipment. The support of Mr. Tsegaye Alemu, Melkam Dagnaw and Meseret Mulu during data collection in the field is duly acknowledged.

REFERENCES

- Aerts, R., Lerouge, F., Hermy, M. and Muys, B. (2008). Land rehabilitation and the conservation of birds in a degraded Afromontane landscape in northern Ethiopia. *Biodivers. Conserv.* 17: 53–69.
- Arnold, T.W. and Zink, R.M. (2011). Collision mortality has no discernible effect on population trends of North American birds. *PLoS ONE* 6: 24708. doi: 10.1371/journal.pone.0024708.
- Atchison, K.A. and Rodewald, A.D. (2006). The value of urban forests to wintering birds. *Nat. Areas J.* **26**: 280–288.
- Battin, J. (2004). When good animals love bad habitats: ecological traps and the

conservation of animal populations. Conserv. Biol. 18: 1482-1491.

- Bellrose, F.C. and Trudeau, N.M. (1998). Wetlands and their Relationship to Migrating and Winter Populations of Waterfowl. Organization Timber Press, Portland.
- Bibby, C.J., Hill, D.A. and Mustoe, S.H. (2000). **Bird Census Techniques**. Second edition. Academic Press, London.
- Bichet, C., Scheifler, R., Coeurdassier, M., Julliard, R., Sorci, G. and Loiseau, C. (2013) Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. *PLoS ONE* 8: 53866. doi: 10.1371/journal.pone.0053866.
- Brouwer, J., Mullié, W.C. and Scholte, P. (2003). White storks *Ciconia ciconia* wintering in Chad, northern Cameroon and Niger: a comment on Berthold, Van Den Bossche, W.R. *Ibis* **145**: 499–501.
- Burgin, S., and Saunders, T. (2007). Parrots of the Sydney region: Population changes over 100 years. In: Pest or Guest: The Zoology of Overabundance, pp. 185–194 (Lunney, D., Ebby, P., Hutchings, P. and Burgin, S., eds.). Royal Zoological Society of New South Wales, Mosman.
- Canterbury, G.E., Martin, T.E., Petit, D.R., Petit, L.J. and Bradford, D.F. (2000). Bird communities and habitat as ecological indicators of forest condition in regional monitoring. *Conserv. Biol.* **14**(2): 544–58.
- Coogan, S.C., Machovsky-Capuska, G.E., Senior, J.M., Martin, J.M., Major, R.E. and Raubenheimer, D. (2017). Macronutrient selection of free-ranging urban Australian white ibis (*Threskiornis moluccus*). *Behav. Ecol.* 28:1021–1029.
- Czech, B., Krausman P.R. and Devers, P.K. (2000). Economic associations among causes of species endangerment in the United States. *Bioscience* **50**: 593–601.
- Daniels, G.D. and Kirkpatrick, J.B. (2006). Does variation in garden characteristics influence the conservation of birds in suburbia? *Biol. Conserv.* **133**: 326–335.
- Dobson, A. and Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. *London Biol. Sci.* **356**: 1001–1012.
- Doggart, N., Lovett, J., Mhoro, B., Kiure, J. and Burgess, N. (2005). Biodiversity surveys in the Forest Reserves of the Uluguru Mountains. Technical paper for the Wildlife Conservation Society of Tanzania and Tanzanian Forest Conservation Group, Tanzania.
- Eeva, T., Lehikoinen, E. and Nikinmaa, M. (2003). Pollution-induced nutritional stress in birds: an experimental study of direct and indirect effects. *Ecol. Appl.* 13:1242– 1249.
- Evans, K.L. Chamberlain, D.E., Hatchwell, B.J., Gregory, R.D. and Gaston, K.J. (2011). What makes an urban bird? *Glob. Change Biol.* **17**(1): 32–44.
- Fuller, R.A., Tratalos, J., Warren, P.H., Davies, R.G., Pepkowska, A. and Gaston, K.J. (2010). Dimensions of the sustainable city. In: Environment and Biodiversity, pp. 75–103 (Jenks, M. and Jones, C., eds.). Springer, London.
- Galbraith, J.A., Beggs, J.R., Jones, D.N. and Stanley, M.C. (2015). Supplementary feeding restructures urban bird communities. *Proc. Natl. Acad. Sci. USA* **112**: E2648–E2657.
- Girma Mengesha, Yosef Mamo and Afework Bekele (2011). A composition of terrestrial bird community structure in the undisturbed and disturbed areas of the Abijata Shalla Lakes National Park, Ethiopia. *Int. J. Biodivers. Conserv.* **9**: 389–404.
- Grimm, N.B., Faeth, S.H., Golubiewski, N.E. and Briggs, J.M. (2008). Global change and the ecology of cities. *Science* **319**: 756–760.
- Groffman, P.M. (2014). Ecological homogenization of urban USA. Front. Ecol. Environ.

12:74-81.

- Hoornweg, D. and Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. Urban Development Series; Knowledge papers no. 15. World Bank, Washington, DC.
- Janssens, E., Dauwe, T., Pinxten, R., Bervoets, L., Blust, B. and Eens, M. (2003). Effects of heavy metal exposure on the condition and health of nestlings of the great tit (*Parus major*), a small songbird species. *Environ. Pollut.* **126**: 267–274.
- Kingsford, R.T. (2000). Review: ecological impacts of dams, water diversions and river Management on flood plain wetlands in Australia. *Austral. Ecol.* **25**: 109–127.
- Magurran, A.E. (1988). Ecological Diversity and its Measurement. Princeton University Press, Princeton, NJ.
- Marzluff, J.M. (2005). Island biogeography for an urbanizing world: How extinction and colonization may determine biological diversity in human-dominated landscapes. *Urban Ecosyst.* **8**:157–177.
- Matejczyk, M., Plaza, G.A., Nalecz-Jawecki, G., Ulfig, K. and Markowska-Szczupak, A. (2011). Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. *Chemosphere* 82: 1017– 1023.
- McKinney, M.L. (2002). Urbanization, biodiversity, and conservation. *Bioscience* **52**: 883–890.
- Mehra, S.P., Mehra, S., Uddin, M., Verma, V. and Sharma, H. (2017). Waste as a resource for avifauna: Review and survey of the avifaunal composition in and around waste dumping sites and sewage water collection sites (India). *Int. J. Waste Resour.* 7: 1– 8.
- Miller, J.R., Fraterrigo, J.M., Hobbs, N.T., Theobald, D.M. and Wiens, J.A. (2001). Urbanization, avian communities, and landscape ecology. In: **Avian Ecology and Conservation in an Urbanizing World**, pp. 117–137 (Marzluff, J.M., Bowman, R. and Donnelly, R., eds.). Springer, Boston.
- Nyari, A., Ryall, C. and Peterson, T. A. (2006). Global invasive potential of the house crow *Corvus splendens* based on ecological niche modelling. *J. Avian Biol.* **37**(4): 306–311.
- Pautasso, M. (2007). Scale dependence of the correlation between human population presence and vertebrate and plant species richness. *Ecol. Lett.* **10**: 16–24.
- Pavlik, J. and Pavlik, S. (2000). Some relationships between human impact, vegetation, and birds in urban environment. *Ekolog. Bratis.* **19**: 392–408.
- Perlo, B.V. (2009). A Field Guide to the Birds of Eastern Africa. Harper Collin Publishers Ltd, Hammersmith, London.
- Raupp, M.J., Shrewsbury, P.M. and Herms, D.A. (2010). Ecology of herbivorous arthropods in urban landscapes. *Ann. Rev. Entomol.* **55**: 19–38.
- Redman, N., Stevenson, T. and Fanshawe, J. (2009). Birds of the Horn of Africa. Christopher Helm, London.
- RCore Team (2020). R; a language and environment for statistical computing. Version 4.0.0. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
- Ryan, P.G. and Owino, A.O. (2006). Habitat Association of Papyrus Specialist Birds at Three Papyrus Swamps in Western Kenya. Blackwell Publishing Ltd, Nairobi.
- Schlossberg, S. and King, D. (2008). Are shrubland birds edge specialists? *Ecol. Appl.* **18**(6): 1325–1330.

- Shannon, C.E. and Weaver, W. (1949). **The Mathematical Theory of Communication**. University of Illinois Press, Urbana, Illinois.
- Shimelis Aynalem and Afeworke Bekele (2008). Species composition, relative abundance and distribution of bird fauna of riverine and wetland habitats of Infranz and Yiganda at southern tip of Lake Tana, Ethiopia. *Trop. Ecol.* **49**: 199–209.
- Shimelis Aynalem, Afework Bekele, Abebe Getahun (2008). Species diversity, distribution, relative abundance and habitat association of the avian fauna of modified habitat of Bahir Dar and Debre Mariam island, Lake Tana, Ethiopia. *Int. J. Ecol. Environ. Sci.* **34**(3): 259–267.
- Simpson, E.H. (1949). Measurement of diversity. Nature 163: 688.
- Strohbach, M.W., Haase, D. and Kabisch, N. (2009). Birds and the city: Urban biodiversity, land use, and socioeconomics. *Ecol. Soc.* 14(2): 31–45.
- Sushinsky, J.R., Rhodes, J.R., Possingham, H.P., Gill, T.K. and Fuller, R.A. (2013). How should we grow cities to minimize their biodiversity impacts? *Glob. Change Biol.* 19: 401–410.
- Vielliard, J.M.E. (2000). Bird community as an indicator of biodiversity: results from quantitative surveys in Brazil. *An. Acad. Bras. Cienc.* **72**: 323–330.
- Wenny, D.G., DeVault, T.L., Johnson, M.D., Sekercioglu, C.H. and Whelan, C.J. (2011). The need to quantify ecosystem services provided by birds. *Auk* **128**: 1–14.

		Season				
Common name	Scientific name	Family	Order	Dry	Wet	Both
Abdim's stork	Ciconia abdimii	Ciconiidae	Ciconiiformes		х	
Abyssinian oriole (+)	Oriolus monacha	Oriolidae	Passeriformes			Х
Abyssinian white-eye	Zosterops abyssinicus	Zosteropidae	Passeriformes			Х
African citril	Crithagra citrinelloides	Fringillidae	Passeriformes		х	
African darter	Anhinga rufa	Anhingidae	Suliformes			Х
African fire finch	Lagonosticta rubricata	Estrildidae	Passeriformes	Х		
African fish eagle	Haliaeetus vocifer	Accipitridae	Accipitriformes			Х
African grey hornbill	Lophoceros nasutus	Bucerotidae	Bucerotiformes		х	
African hoopoe	Upupa africana	Upupidae	Bucerotiformes		х	
African jacana	Actophilornis africanus	Jacanidae	Charadriiformes			Х
African mourning dove	Streptopelia decipiens	Columbidae	Columbiformes		х	
	Anastomus	Ciconiidae	Ciconiiformes			
African open bill	lamelligerus					Х
African paradise-flycatcher	Terpsiphone viridis	Monarchidae	Passeriformes			Х
African pygmy-kingfisher	Ispidina picta	Alcedinidae	Coraciiformes		х	
African spoonbill	Platalea alba	Threskiornithidae	Pelecaniformes			Х
African thrush	Turdus pelios	Turdidae	Passeriformes			Х
African wattled plover	Vanellus senegallus	Charadriidae	Charadriiformes			Х
	Pseudoalcipe	Sylviidae	Passeriformes			
African-hill babbler	abyssinica				х	
Baglafecht weaver	Ploceus baglafecht	Ploceidae	Passeriformes		Х	
Banded barbet (+)	Lybius undatus	Lybiidae	Piciformes		Х	
Bar-breasted firefinch	Lagonosticta rufopicta	Estrildidae	Passeriformes		х	
	Corythaixoides	Musophagidae	Musophagiformes			
Bare-faced go away bird	personatus				х	
Beautiful sunbird	Cinnyris pulchellus	Nectariniidae	Passeriformes	Х		
Black-billed barbet	Lybius guifsobalito	Lybiidae	Piciformes			Х
	Phoeniculus	Phoeniculidae	Bucerotiformes			
Black-billed wood hoopoe	somaliensis					Х

Appendix 1. List of bird species recorded in the study area during wet and dry seasons, (+) species endemic to Ethiopia and Eritrea, (*) species endemic to Ethiopia.

		Season				
Common name	Scientific name	Family	Order	Dry	Wet	Both
Blackcap	Sylvia atricapilla	Sylviidae	Passeriformes	х		
Black crake	Amaurornis flavirostra	Rallidae	Gruiformes			х
Black-crowned crane	Balearica pavonina	Gruidae	Gruiformes			х
Black and white mannikin	Lonchura bicolor	Estrildidae	Passeriformes		х	
Black kite	Milvus migrans	Accipitridae	Accipitriformes		х	
Black stork	Ciconia nigra	Ciconiidae	Ciconiiformes		х	
Black-headed batis	Batis minor	Platysteiridae	Passeriformes		х	
Black-headed heron	Ardea melanocephala	Ardeidae	Pelecaniformes			х
Black-headed forest oriole	Oriolus monacha	Oriolidae	Passeriformes			х
Black-headed siskin (*)	Spinus notatus	Fringillidae	Passeriformes		х	
Black-tailed godwit	Spinus notatus	Fringillidae	Passeriformes		х	
Black-winged lovebird (+)	Agapornis taranta	Psittaculidae	Psittaciformes			х
Black-winged plover	Vanellus melanopterus	Charadriidae	Charadriiformes		х	
Black-winged red bishop	Euplectes hordeaceus	Ploceidae	Passeriformes		х	
0	Himantopus	Recurvirostridae	Charadriiformes			
Black-winged stilt	himantopus					х
Blue-breasted beeeater	Merops variegatus	Meropidae	Coraciiformes			х
Blue-headed coucal	Centropus monachus	Cuculidae	Cuculiformes			х
Blue-spotted wood dove	Turtur afer	Columbidae	Columbiformes			х
Bronze mannikin	Lonchura cucullata	Estrildidae	Passeriformes			х
Brown-backed	Dendropicos obsoletus	Picidae	Piciformes			
woodpecker				Х		
Brown-throated wattle-	Platysteira cyanea	Platysteiridae	Passeriformes			
eye						х
Bruce's green pigeon	Treron waalia	Columbidae	Columbiformes			х
Cape rook	Corvus frugilegus	Corvidae	Passeriformes			х
	Dendropicos	Picidae	Piciformes			
Cardinal woodpecker	fuscescens			х		
Caspian plover	Charadrius asiaticus	Charadriidae	Charadriiformes	Х		
Cattle egret	Bubulcus ibis	Ardeidae	Pelecaniformes		х	
Clapperton's Francolin	Francolinus	Phasianidae	Galliformes		х	

		Season				
Common name	Scientific name	Family	Order	Dry	Wet	Both
	clappertoni					
Collared sunbird	Hedydipna collaris	Nectariniidae	Passeriformes	Х		
Common bulbul	Pycnonotus barbatus	Pycnonotidae	Passeriformes			Х
Common fiscal	Lanius collaris	Laniidae	Passeriformes			Х
Common green shank	Tringa nebularia	Scolopacidae	Charadriiformes		х	
Common martin	Delichon urbicum	Hirundinidae	Passeriformes		х	
Common ringed plover	Charadrius hiaticula	Charadriidae	Charadriiformes			Х
Common sandpiper	Actitis hypoleucos	Scolopacidae	Charadriiformes			х
Copper sunbird	Cinnyris cupreus	Nectariniidae	Passeriformes	Х		
Common swift	Apus apus	Apodidae	Apodiformes		х	
Cut-throat finch	Charadriiformes	Estrildidae	Passeriformes			х
Double-toothed barbet	Lybius bidentatus	Lybiidae	Piciformes			х
Dusky-turtle dove	Streptopelia lugens	Columbidae	Columbiformes		х	
Eastern grey plantain eater	Crinifer zonurus	Musophagidae	Musophagiformes			х
Egyptian goose	Alopochen aegyptiaca	Anatidae	Anseriformes			х
Emerald-spotted wood			Columbiformes			
dove	Turtur chalcospilos	Columbidae			х	
Ethiopian boubou	Laniarius aethiopicus	Malaconotidae	Passeriformes			Х
Ethiopian swallow	Hirundo aethiopica	Hirundinidae	Passeriformes			Х
Eurasian hoopoe	Upupa epops	Upupidae	Bucerotiformes			х
Fan-tailed raven	Corvus rhipidurus	Corvidae	Passeriformes			х
Fork-tailed drongo	Dicrurus adsimilis	Dicruridae	Passeriformes		Х	
Glossy ibis	Plegadis falcinellus	Threskiornithidae	Pelecaniformes		Х	
Great egret	Ardea alba	Ardeidae	Pelecaniformes			Х
Greater flamingo	Phoenicopterus roseus	Phoenicopteridae	Phoenicopteriformes		Х	
Greater honey guide	Indicator indicator	Indicatoridae	Piciformes		Х	
	Lamprotornis		Passeriformes			
Greater-blue eared starling	chalybaeus	Sturnidae				Х
Grey wagtail	Motacilla cinerea	Motacillidae	Passeriformes			Х
	Camaroptera		Passeriformes			
Grey-backed camaroptera	brevicaudata	Cisticolidae			Х	

		Season				
Common name	Scientific name	Family	Order	Dry	Wet	Both
Grey-backed fiscal	Lanius excubitoroides	Laniidae	Passeriformes			х
Grey-headed kingfisher	Halcyon leucocephala	Alcedinidae	Coraciiformes			Х
Grey-headed woodpecker	Picus canus	Picidae	Piciformes			Х
Greyish eagle-owl	Bubo cinerascens	Strigidae	Strigiformes	Х		
	Psophocichla	Turdidae	Passeriformes			
Groundscraper thrush	litsitsirupa			Х		
Hadada ibis	Bostrychia hagedash	Threskiornithidae	Pelecaniformes			Х
Hamerkop	Scopus umbretta	Scopidae	Pelecaniformes			Х
Helmeted guineafowl	Numida meleagris	Numididae	Galliformes		х	
Hermprich's hornbill	Lophoceros hemprichii	Bucerotidae	Bucerotiformes			Х
Hooded vulture	Necrosyrtes monachus	Accipitridae	Accipitriformes			Х
Isabelline shrike	Lanius isabellinus	Laniidae	Passeriformes			х
Isabelline Wheatear	Oenanthe isabellina	Muscicapidae	Passeriformes			х
Knob-billed duck	Sarkidiornis melanotos	Anatidae	Anseriformes			х
Lappet-faced vulture	Torgos tracheliotos	Accipitridae	Accipitriformes		х	
Laughing dove	Spilopelia senegalensis	Columbidae	Columbiformes			х
Lesser jacana	Microparra capensis	Jacanidae	Charadriiformes		х	
2	Lamprotornis		Passeriformes			
Lesser Blue-eared Starling	chloropterus	Sturnidae			х	
Lesser-masked weaver	Ploceus intermedius	Ploceidae	Passeriformes		х	
Lesser-striped swallow	Cecropis abyssinica	Hirundinidae	Passeriformes		х	
Little bee-eater	Merops pusillus	Meropidae	Coraciiformes			х
Little egret	Egretta garzetta	Ardeidae	Pelecaniformes		х	
Little weaver	Ploceus luteolus	Ploceidae	Passeriformes		х	
Little-ringed plover	Charadrius dubius	Charadriidae	Charadriiformes		х	
Spur-winged lapwing	Vanellus spinosus	Charadriidae	Charadriiformes		х	
Long-tailed cormorant	Microcarbo africanus	Phalacrocoracidae	Suliformes		х	
Marabou stork	Leptoptilos crumenifer	Ciconiidae	Ciconiiformes			х
Marsh sandpiper	Tringa stagnatilis	Scolopacidae	Charadriiformes			х
	Thamnolaea	*	Passeriformes			
Mocking cliff chat	cinnamomeiventris	Muscicapidae				х

		Season				
Common name	Scientific name	Family	Order	Dry	Wet	Both
Mosque swallow	Cecropis senegalensis	Hirundinidae	Passeriformes	Х		
Mountain thrush	Turdus plebejus	Turdidae	Passeriformes			х
Namaqua dove	Oena capensis	Columbidae	Columbiformes		х	
Northern crombec	Sylvietta brachyura	Macrosphenidae	Passeriformes			х
Northern wheatear	Oenanthe oenanthe	Muscicapidae	Passeriformes	Х		
Northern-black flycatcher	Melaenornis edolioides	Muscicapidae	Passeriformes			х
Northern-masked weaver	Ploceus taeniopterus	Ploceidae	Passeriformes		х	
Northern-red bishop	Euplectes franciscanus	Ploceidae	Passeriformes		х	
Nyanza swift	Apus niansae	Apodidae	Caprimulgiformes		х	
Pied crow	Corvus albus	Corvidae	Passeriformes			х
Pied kingfisher	Ceryle rudis	Alcedinidae	Coraciiformes			х
Pied wagtail	Motacilla aguimp	Motacillidae	Passeriformes		х	
Pied wheatear	Oenanthe pleschanka	Muscicapidae	Passeriformes	Х		
Pin-tailed whydah	Vidua macroura	Viduidae	Passeriformes			х
White-cheeked turaco	Tauraco leucotis	Musophagidae	Musophagiformes		х	
Purple heron	Ardea purpurea	Ardeidae	Pelecaniformes		х	
Red-billed duck	Anas erythrorhyncha	Anatidae	Anseriformes		х	
Red-billed firefinch	Lagonosticta senegala	Estrildidae	Passeriformes			Х
African Grey hornbill	Tockus nasutus	Bucerotidae	Bucerotiformes		х	
	Buphagus	Buphagidae	Passeriformes			
Red-billed oxepecker	erythrorhynchus					Х
Red-breasted wheatear	Oenanthe bottae	Muscicapidae	Passeriformes			Х
Red-cheeked cordon-bleu	Uraeginthus bengalus	Estrildidae	Passeriformes			Х
Red-chested swallow	Hirundo lucida	Hirundinidae	Passeriformes	Х		
Red-collard widowbird	Euplectes ardens	Ploceidae	Passeriformes		х	
	Streptopelia		Columbiformes			
Red-eyed dove	semitorquata	Columbidae				х
Red-fronted tinkerbird	Pogoniulus pusillus	Lybiidae	Piciformes		Х	
Red-knobbed coot	Fulica cristata	Rallidae	Gruiformes		х	
Red-winged prinia	Prinia erythroptera	Cisticolidae	Passeriformes	х		
Ring-necked dove	Streptopelia capicola	Columbidae	Columbiformes			х

				Season		
Common name	Scientific name	Family	Order	Dry	Wet	Both
Rock martin	Ptyonoprogne fuligula	Hirundinidae	Passeriformes	X		
Rouget's rail	Rougetius rougetii	Rallidae	Gruiformes		х	
Ruppell's robin chat	Cossypha semirufa	Muscicapidae	Passeriformes			х
	Lamprotornis	Sturnidae	Passeriformes			
Ruppell's starling	purpuroptera					Х
Ruppell's vulture	Gyps rueppelli	Accipitridae	Accipitriformes			х
	Threskiornis	Threskiornithidae	Pelecaniformes			
Sacred ibis	aethiopicus					х
	Ephippiorhynchus					
Saddle-billed stork	senegalensis	Ciconiidae	Ciconiiformes			Х
Scarlet-chested sunbird	Scarlet-chested sunbird	Nectariniidae	Passeriformes			Х
Silvery-cheeked hornbill	Bycanistes brevis	Bucerotidae	Bucerotiformes			х
Speckled mousebird	Colius striatus	Coliidae	Coliiformes			Х
Speckled pigeon	Columba guinea	Columbidae	Columbiformes			х
Spectacled weaver	Ploceus ocularis	Ploceidae	Passeriformes	х		
	Plectropterus					
Spur-winged goose	gambensis	Anatidae	Anseriformes			х
Spur-winged plover	Vanellus spinosus	Charadriidae	Charadriiformes			Х
Squacco heron	Ardeola ralloides	Ardeidae	Pelecaniformes			х
Striped kingfisher	Halcyon chelicuti	Alcedinidae	Coraciiformes			х
Swainson's sparrow	Passer swainsonii	Passeridae	Passeriformes			Х
Tawny eagle	Aquila rapax	Accipitridae	Accipitriformes		х	
Tawny-flanked prinia	Prinia subflava	Cisticolidae	Passeriformes		х	
Thick-billed raven	Corvus crassirostris	Corvidae	Passeriformes			Х
Variable sunbird	Cinnyris venustus	Nectariniidae	Passeriformes			х
Vatelline masked weaver	Ploceus vitellinus	Ploceidae	Passeriformes		х	
Village indigobird	Vidua chalybeate	Viduidae	Passeriformes			х
Village weaver	Ploceus cucullatus	Ploceidae	Passeriformes			х
-	Cinnyricinclus	Sturnidae	Passeriformes			
Violet-backed starling	leucogaste					х
Eastern Violet backed	Anthreptes orientalis	Nectariniidae	Passeriformes	х		

		Season					
Common name sunbird	Scientific name	Family	Order	Dry	Wet	Both	
Wattled crane	Grus carunculata	Gruidae	Gruiformes		х		
Wattled ibis (+)	Bostrychia carunculata	Threskiornithidae	Pelecaniformes			Х	
White wagtail	Motacilla alba	Motacillidae	Passeriformes			Х	
White-backed vulture	Gyps africanus	Accipitridae	Accipitriformes			Х	
White-bellied go away	Corythaixoides	Musophagidae	Musophagiformes				
bird	leucogaster					Х	
White-cheeked turaco	Tauraco leucotis	Musophagidae	Musophagiformes		х		
White-faced whistling	Dendrocygna viduata	Anatidae	Anseriformes				
duck						Х	
White-headed vulture	Trigonoceps occipitalis	Accipitridae	Accipitriformes			Х	
White-rumped babbler	Turdoides leucopygia	Leiothrichidae	Passeriformes			Х	
Willow warbler	Phylloscopus trochilus	Phylloscopidae	Passeriformes			Х	
Wire-tailed swallow	Hirundo smithii	Hirundinidae	Passeriformes		х		
Wood sandpiper	Tringa glareola	Scolopacidae	Charadriiformes		х		
Woodland kingfisher	Halcyon senegalensis	Alcedinidae	Coraciiformes			Х	
Woolly-necked stork	Ciconia episcopus	Ciconiidae	Ciconiiformes			Х	
Yellow wagtail	Motacilla flava	Motacillidae	Passeriformes			Х	
Yellow white eye	Zosterops nigrorum	Zosteropidae	Passeriformes	Х			
Yellow-billed egret	Ardea brachyrhyncha	Ardeidae	Pelecaniformes			Х	
Yellow-billed kite	Milvus aegyptius	Accipitridae	Accipitriformes			Х	
Yellow-billed oxpecker	Buphagus africanus	Buphagidae	Passeriformes	Х			
Yellow-billed stork	Mycteria ibis	Ciconiidae	Ciconiiformes			Х	
Yellow-crowned bishop	Euplectes afer	Ploceidae	Passeriformes		х		
Yellow-fronted canary	Crithagra mozambica	Fringillidae	Passeriformes		х		
Yellow-mantled							
widowbird	Euplectes macroura	Ploceidae	Passeriformes		х		
Zebra waxbill	Amandava subflava	Estrildidae	Passeriformes	х			

	Semi-forest		Residential		Wetland		Waste dumping		
	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	
Semi-forest	1	1	0.52	0.40	0.23	0.24	0.27	0.24	
Residential area	-	-	1	1	0.40	0.28	0.35	0.30	
Wetland	-	-	-	-	1	1	0.54	0.47	
Waste dumping site	-	-	-	-	-	-	1	1	

Table 2. Similarity index of bird species among different habitat types during wet and dry seasons.